Highly sensitive detection of proteins based on metal-enhanced fluorescence with novel silver nanostructures.

Anal Chem

State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.

Published: October 2012

We present a highly sensitive metal enhanced fluorescence (MEF) method based on a novel silver nanostructure fabricated with Cy5-functionalized silver nanoparticles (AgNPs) and AgNO(3). The analytical performance has been demonstrated by microarray detection of streptavidin (SA) and human IgE. The fluorescence intensity can be enhanced substantially with the combined use of AgNPs and fluorescence enhanced solution (FES). Aptamers have been used for the preparation of Tag-C, which demonstrate IgE detection from 0.5 ng/mL to 16 ng/mL, and the limit of detection is determined to be 0.25 ng/mL. SEM images show nanogaps exist in the aggregated silver nanoparticles and the nanogaps allow for the trap of fluorophores in the nanostructures that emit brighter light upon excitation. The silver nanostructures formed by Tags and FES proved to be an excellent platform for MEF of fluorophores whose excitation and emission occurred between 436 nm and 1000 nm. Finite-difference time-domain (FDTD) simulation has been carried out to confirm the enhanced electromagnetic field inside silver nanostructures, leading to strong overlap/resonance coupling and eventual fluorescence enhancement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac301787xDOI Listing

Publication Analysis

Top Keywords

silver nanostructures
12
highly sensitive
8
novel silver
8
silver nanoparticles
8
silver
6
fluorescence
5
detection
4
sensitive detection
4
detection proteins
4
proteins based
4

Similar Publications

Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.

View Article and Find Full Text PDF

A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).

View Article and Find Full Text PDF

Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.

View Article and Find Full Text PDF

Integrating noble metal nanostructures, specifically silver nanoparticles, into sensor designs has proven to enhance sensor performance across key metrics, including response time, stability, and sensitivity. However, a critical gap remains in understanding the unique contributions of various synthesis parameters on these enhancements. This study addresses this gap by examining how factors such as temperature, growth time, and choice of capping agents influence nanostructure shape and size, optimizing sensor performance for diverse conditions.

View Article and Find Full Text PDF

Purpose: Multi-walled carbon nanotubes (MWCNTs) were used as carriers for silver nanoparticles (AgNPs). In this process, MWCNTs were coated with mesoporous silica (MWCNT-Silica) for uniform and regular loading of AgNPs on the MWCNTs. In addition, astaxanthin (AST) extract was used as a reducing agent for silver ions to enhance the antioxidant, antibiofilm, and anticancer activities of AgNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!