Thallium (Tl) is emerging as a metal of concern in countries such as China due to its release during the natural weathering of Tl-bearing ore deposits and mining activities. Despite the high toxicity of Tl, few studies have examined the reductive dissolution of Tl mineral phases by microbial populations. In this study we examined the dissolution of synthetic Tl(I)-jarosite, (H(3)O)(0.29)Tl(0.71)Fe(2.74)(SO(4))(2)(OH)(5.22)(H(2)O)(0.78), by Shewanella putrefaciens CN32 using batch experiments under anaerobic circumneutral conditions. Fe(II) concentrations were measured over time and showed Fe(II) production (4.6 mM) in inoculated samples by 893 h not seen in mineral and dead cell controls. Release of aqueous Tl was enhanced in inoculated samples whereby maximum concentrations in inoculated and cell-free samples reached 3.2 and 2.1 mM, respectively, by termination of the experiment. Complementary batch Tl/S. putrefaciens sorption experiments were conducted under experimentally relevant pH (5 and 6.3) at a Tl concentration of 35 μM and did not show significant Tl accumulation by either live or dead cells. Therefore, in contrast to many metals such as Pb and Cd, S. putrefaciens does not represent a sink for Tl in the environment and Tl is readily released from Tl-jarosite during both abiotic and biotic dissolution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es302292dDOI Listing

Publication Analysis

Top Keywords

reductive dissolution
8
shewanella putrefaciens
8
inoculated samples
8
dissolution tli-jarosite
4
tli-jarosite shewanella
4
putrefaciens
4
putrefaciens providing
4
providing insights
4
insights biogeochemistry
4
biogeochemistry thallium
4

Similar Publications

Naturally widespread ferrihydrite is unstable and often coexists with complex ions, such as the heavy metal ion Pb(II). Ferrihydrite could fix Pb(II) by precipitation and hydroxyl adsorption, but release Pb(II) with mineral aging. Gallic acid plays an important role in influencing the geochemical behavior of ferrihydrite-Pb, and anoxia is one of the factors influencing the transformation of mineral.

View Article and Find Full Text PDF

Reductive dechlorination of trichloroethene at concentrations approaching saturation by a Desulfitobacterium-containing community.

J Hazard Mater

December 2024

School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, China; State Environment Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment,  Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China. Electronic address:

In dense nonaqueous phase liquid (DNAPL) contaminant source zones, aqueous concentrations of trichloroethene (TCE) in groundwater may approach saturation levels (8.4 mM). It is generally believed that such saturation concentrations are toxic to organohalide-respiring bacteria (OHRB), thus limiting the effectiveness of bioremediation.

View Article and Find Full Text PDF

As wildfire events become more frequent, there is a need to better understand the impact of smoke on the environment and human health. Smoke, or biomass burning aerosol (BBA), can undergo atmospheric processing changing its chemical and optical properties. We examined the interactions between four lignin pyrolysis products (catechol, syringol, syringic acid, and vanillic acid) and three BBA-relevant iron oxide mineral phases (hematite, maghemite, and magnetite) using attenuated total reflectance-Fourier transform infrared spectroscopy and dissolved iron measurements to better understand how atmospheric processing changes concentrations of soluble iron, iron oxidation state, and brown carbon abundance.

View Article and Find Full Text PDF

Stability of Lead(IV) Oxide in a Lead Pipe Scale and Its Potential Role in Corrosion Control.

Environ Sci Technol

December 2024

Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Campus Box 1180, One Brookings Drive, St. Louis, Missouri 63130, United States.

Lead(IV) oxide (PbO) is an important component of the scale in many lead pipes used for water supply. Promoting conditions that maintain its stability could be an effective method for limiting lead release. In this study, we applied a method that combined electrochemical and free chlorine conditioning to form PbO scales on coupons.

View Article and Find Full Text PDF

Review and test on rare earths recovery from polishing powder waste.

Heliyon

December 2024

Jiangsu Guangsheng Jianfa Renewable Resources Co., LTD, Lianyungang, Jiangsu, 222006, China.

Rare earth polishing powder has gained widespread usage in the surface polishing of high-precision materials, exhibiting an annual growth rate exceeding 10 %. However, a significant portion of this powder is discarded due to impurities and the need for particle size refinement. The waste generated from polishing powder contains 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!