The ability of dip-pen nanolithography (DPN) to generate nano- or microarrays of soft or hard materials (e.g., small molecules, DNA, proteins, nanoparticles, sols, and polymers) in a direct-write manner has been widely demonstrated. The transporting of large-sized ink materials such as bacteria, however, remains a significant challenge with this technique. The size limitation of the water meniscus formed between the DPN tip and the solid surface becomes a bottleneck in such diffusion-based molecular transport experiments. Herein, we report a straightforward "stamp-on" DPN method that uses a nanostructured poly(2-methyl-2-oxazoline) hydrogel-coated tip and carrier agents to generate patterns of micrometer-sized Escherichia coli JM 109 bacterial cells. We demonstrate that this approach enables the deposition of a single bacterial cell array on a solid surface or arrays of layers of multiple cells by modulating the viscosity of the "ink" solution. Fluorescence microscopy images indicated that the deposited bacterial cells were kept alive on Luria-Bertani-agar layered solid surfaces after DPN patterning.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja3073808DOI Listing

Publication Analysis

Top Keywords

bacterial cells
12
dip-pen nanolithography
8
solid surface
8
direct-write patterning
4
bacterial
4
patterning bacterial
4
cells
4
cells dip-pen
4
nanolithography ability
4
ability dip-pen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!