In uterine smooth muscle, the effects of watermelon and its citrulline content are unknown. The aims of this study were therefore, to determine the effects of watermelon extract and citrulline on the myometrium and to investigate their mechanisms of action. The effects of extracts of watermelon flesh and rind and L-citrulline (64 μmol/L) were evaluated on 3 types of contractile activity; spontaneous, those elicited by potassium chloride (KCl) depolarization, or oxytocin (10 nmol/L) application in isolated rat uterus. Inhibitors of nitric oxide (NO) and its mechanisms of action, N ω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 100 μmol/L), LY83583 (1 μmol/L), and tetraethylamonium chloride (5 mmol/L), as well as Ca signaling pathways, were determined. Both flesh and rind extracts significantly decreased the force produced by all 3 mechanisms, in a dose-dependent manner. The extracts could also significantly decrease the force under conditions of sustained high Ca levels (depolarization and agonist) and when the force was produced only by sarcoplasmic reticulum (SR) Ca release. L-citrulline produced the same effects on force as watermelon extracts. With submaximal doses of extract, the additive effects of L-citrulline were found. The inhibitory effects of extracts and L-citrulline were reversed upon the addition of NO inhibitors, and pretreatment of tissues with these inhibitors prevented the actions of both extracts and L-citrulline. Thus, these data show that watermelon and citrulline are potent tocolytics, decreasing the force produced by calcium entry and SR release and arising by different pathways, including oxytocin stimulation. Their major mechanism is to stimulate the NO-cyclic guanosine monophosphate (cGMP) relaxant pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1933719112459223 | DOI Listing |
GM Crops Food
December 2025
School of Life Science, Henan University, Kaifeng, Henan, People's Republic of China.
Malic acid markedly affects watermelon flavor. Reducing the malic acid content can significantly increase the sweetness of watermelon. An effective solution strategy is to reduce watermelon malic acid content through molecular breeding technology.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Newe Ya'ar Research Center, Ramat Yishay 3009500, Israel.
L. (Aizoaceae), commonly known as desert horse purslane or black pigweed, is a C4 dicot succulent invasive annual plant that is widespread in agricultural fields in Southeast Asia, tropical America, Africa, and Australia. In Israel, is an invasive weed of increasing importance in agricultural fields, including mainly corn, tomato, alfalfa watermelon, and groundnut crops.
View Article and Find Full Text PDFSci Rep
January 2025
Biochemistry Department, Faculty of Agriculture, Al Azhar University, Cairo, Egypt.
Glutaraldehyde (GLU) is mainly used in medicine by healthcare workers during infection control as a chemical disinfectant. It has been linked to numerous health hazards that range from asthma to irritation of the eye to contact dermatitis. Citrullus colocynthis (C.
View Article and Find Full Text PDFPlant Dis
December 2024
University of Florida Institute of Food and Agricultural Sciences, Plant Pathology, 2550 Hull Rd., Rm. # 1441 Fifield Hall, Gainesville, Florida, United States, 32611-0680;
Management of Fusarium wilt of Watermelon, caused by the fungus f. sp. , or Fon, requires pathogen monitoring in watermelon production systems.
View Article and Find Full Text PDFBMC Biotechnol
December 2024
Department of Botany and Microbiology, Faculty of Science, Suez University, P.O. Box 43221, Suez, Egypt.
Background: Biohydrogen production from agro-industrial wastes through dark fermentation offers several advantages including eco-friendliness, sustainability, and the simplicity of the process. This study aimed to produce biohydrogen from fruit and vegetable peel wastes (FVPWs) by anaerobic fermentative bacteria isolated from domestic wastewater. Kinetic analysis of the produced biohydrogen by five isolates on a glucose medium was analyzed using a modified Gompertz model (MGM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!