Mammalian cell cultures typically exhibit an energy inefficient phenotype characterized by the consumption of large quantities of glucose and the concomitant production of large quantities of lactate. Under certain conditions, mammalian cells can switch to a more energy efficient state during which lactate is consumed. Using a metabolic model derived from a mouse genome scale model we performed flux balance analysis of Chinese hamster ovary cells before and after a metabolic switch from lactate production (in the presence of glucose) to lactate consumption (after glucose depletion). Despite a residual degree of freedom after accounting for measurements, the calculated flux ranges and associated errors were narrow enough to enable investigation of metabolic changes across the metabolic switch. Surprisingly, the fluxes through the lower part of the TCA cycle from oxoglutarate to malate were very similar (around 60 µmol/gDW/h) for both phases. A detailed analysis of the energy metabolism showed that cells consuming lactate have an energy efficiency (total ATP produced per total C-mol substrate consumed) six times greater than lactate producing cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.24728DOI Listing

Publication Analysis

Top Keywords

metabolic switch
12
flux balance
8
balance analysis
8
cells metabolic
8
switch lactate
8
lactate production
8
large quantities
8
lactate
7
cells
5
metabolic
5

Similar Publications

Introduction: Metabolic and bariatric surgery (MBS) is increasingly used for obesity and metabolic disease, with safety profiles showing it is among the safest major operations. The last 20 + years have noted significantly improved safety that has been accompanied by decreasing length of stay and select populations electing for outpatient surgery, leading to continued decreases in cost. Regardless, readmissions and complications still occur, requiring inpatient postoperative care (IP-POC).

View Article and Find Full Text PDF

Background: Growing evidence indicates that noncombustible products could be a tobacco harm reduction tool for smokers who do not quit. The Tobacco Heating System (THS) emits substantially lower levels of harmful cigarette smoke constituents, and previous randomized clinical studies showed improved levels of biomarkers of potential harm (BoPH) linked to smoking-related disease.

Methods: In this cross-sectional study of healthy participants (n = 982) who (i) smoked cigarettes, (ii) had voluntarily switched from smoking to THS use, or (iii) formerly smoked, blood and urine samples were assayed for nine BoPH.

View Article and Find Full Text PDF
Article Synopsis
  • Primary ciliary dyskinesia (PCD) is a rare genetic disorder linked to chronic respiratory issues, infertility, and problems with body asymmetry, primarily caused by mutations in the CCDC39 and CCDC40 genes.
  • Researchers used advanced techniques to investigate how these genetic variants impact cellular functions beyond just causing cilia to stop moving.
  • They discovered that the absence of CCDC39/CCDC40 creates a significant loss of over 90 ciliary structural proteins, leading to cilia dysfunction and other cellular issues, suggesting that gene therapy could potentially offer a new treatment strategy for PCD.
View Article and Find Full Text PDF

This case report presents a newborn with pyruvate dehydrogenase complex deficiency who developed significant lactic acidosis and acute kidney injury after birth. Peritoneal dialysis with glucose-based peritoneal dialysis fluid was initially started, but the patient had worsening hyperglycemia and lactic acidosis, likely related to excess glucose reabsorption with shunting to lactate due to the underlying metabolic disorder. As amino acid-based dialysis solution was not available in our formulary, a dialysis fluid was manually created with Vaminolact, which was commonly used in neonatal parenteral nutrition.

View Article and Find Full Text PDF

Background: Hepatitis B is a liver infection caused by HBV. Infected individuals who fail to control the viral infection develop chronic hepatitis B and are at risk of developing life-threatening liver diseases, such as cirrhosis or liver cancer. Dendritic cells (DCs) play important roles in the immune response against HBV but are functionally impaired in patients with chronic hepatitis B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!