Heat shock proteins (HSPs), inflammatory cytokines, nitric oxide (NO), and localized hypoxia-induced apoptosis are thought to be correlated to the degree of cartilage injury. We investigated the effect of hyperbaric oxygen (HBO) on (1) interleukin-1β (IL-1β)-induced NO production and apoptosis of rabbit chondrocytes and (2) healing of articular cartilage defects. For the in vitro study, RT-PCR and Western blotting were performed to detect mRNA and protein expressions of HSP70, inducible NO synthase (iNOS), and caspase 3 in IL-1β-treated chondrocytes. To clarify that the HSP70 was necessary for anti-iNOS and anti-apoptotic activity by HBO, we treated the cells with an HSP70 inhibitor, KNK437. For the in vivo study, cartilage defects were created in rabbits. The HBO group was exposed to 100% oxygen at 2.5 ATA for 1.5 h a day for 10 weeks. The control group was exposed to normal air. After sacrifice, specimen sections were sent for examination using a scoring system. Immunohistochemical analyses were performed to detect the expressions of iNOS, HSP70, and caspase 3. Our results suggested that HBO upregulated the mRNA and protein expressions of HSP70 and suppressed those of iNOS and caspase 3 in chondrocytes. KNK437 inhibited the HBO-induced downregulation of iNOS and casapase 3 activities. The histological scores showed that HBO markedly enhanced cartilage repair. Immunohistostaining showed that HBO enhanced HSP70 expression and suppressed iNOS and caspase 3 expressions in chondrocytes. Accordingly, HBO treatment prevents NO-induced apoptosis in articular cartilage injury via enhancement of the expression of heat shock protein 70.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.22235DOI Listing

Publication Analysis

Top Keywords

articular cartilage
12
cartilage injury
12
heat shock
12
inos caspase
12
hyperbaric oxygen
8
treatment prevents
8
apoptosis articular
8
injury enhancement
8
enhancement expression
8
expression heat
8

Similar Publications

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Differentiation of stem cells into chondrocytes and their potential clinical application in cartilage regeneration.

Histochem Cell Biol

January 2025

Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, 18 Medyków Street, 40-752, Katowice, Poland.

Cartilage diseases and injuries are considered difficult to treat owing to the low regenerative capacity of this tissue. Using stem cells (SCs) is one of the potential methods of treating cartilage defects and creating functional cartilage models for transplants. Their ability to proliferate and to generate functional chondrocytes, a natural tissue environment, and extracellular cartilage matrix, makes SCs a new opportunity for patients with articular injuries or incurable diseases, such as osteoarthritis (OA).

View Article and Find Full Text PDF

Asymptomatic female softball pitchers have altered hip morphology and cartilage composition.

Sci Rep

January 2025

La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, Australia.

Few studies have explored hip morphology and cartilage composition in female athletes or the impact of asymmetric repetitive loading, such as occurs during softball pitching. The current cross-sectional study assessed bilateral bony hip morphology on computed tomography imaging in collegiate-level softball pitchers ('Pitch1', n = 25) and cross-country runners ('Run', n = 13). Magnetic resonance imaging was used to assess cartilage relaxation times in a second cohort of pitchers ('Pitch2', n = 10) and non-athletic controls ('Con', n = 4).

View Article and Find Full Text PDF

Morphological map of the proximal ulna bare area: a computer-assisted anatomical study in relation to olecranon osteotomy.

J Shoulder Elbow Surg

January 2025

Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing 100044, China; National Center for Trauma Medicine, Peking University People's Hospital, Beijing 100044, China. Electronic address:

Objective: The bare area is defined as a transverse region within the trochlear notch, serving as an optimal entry point for olecranon osteotomy due to the absence of articular cartilage coverage. However, there is limited research on the morphology and location of the bare area, and there is a lack of intuitive visual description. Thus, the purpose of this study is to delineate anatomical features of the bare area and visualize its morphology and refine the olecranon osteotomy approach.

View Article and Find Full Text PDF

Dimethyl Fumarate attenuates synovial inflammation, reduces nociception, and inhibits the development of post-traumatic osteoarthritis.

Biomed Pharmacother

January 2025

Joseph Maxwell Cleland Atlanta VA Medical Center, Decatur, GA 30033, USA; Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University, Atlanta, GA 30329, USA. Electronic address:

There is currently no cure or disease-modifying treatment for post-traumatic osteoarthritis (PTOA). This study aims to assess the efficacy of dimethyl fumarate (DMF), a US-FDA approved drug for multiple sclerosis, as a treatment for PTOA. PTOA was induced in male Lewis rats by medial meniscal transection (MMT) surgery, and DMF was intra-articularly administered once, one week following surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!