AI Article Synopsis

  • * A study compared 12 Gitelman syndrome patients (ages 6-18) to healthy controls, confirming typical biochemical markers and noting significantly lower inorganic phosphate levels in the patients.
  • * The findings reveal that Gitelman syndrome may also lead to renal phosphate wasting, indicating that affected individuals can have mild to moderate low phosphate levels.

Article Abstract

Background: Patients with Gitelman syndrome, a hereditary salt-wasting tubulopathy, have loss-of-function mutations in the SLC12A3 gene coding for the thiazide-sensitive sodium chloride co-transporter in the distal convoluted tubule. Since the bulk of filtered phosphate is reabsorbed in the proximal tubule, renal phosphate wasting is considered exceptional in Gitelman syndrome.

Methods: We investigated the renal handling of inorganic phosphate in 12 unselected Italian patients affected with Gitelman syndrome (5 females and 7 males, aged 6.0-18 years, median age 12 years) and in 12 healthy subjects matched for gender and age (controls). The diagnosis of Gitelman syndrome among the patients had been made clinically and confirmed by molecular biology studies.

Results: The biochemical hallmarks of Gitelman syndrome, namely hypochloremia, hypokalemia, hypomagnesemia, increased urinary excretion of sodium, chloride, potassium and magnesium and reduced urinary excretion of calcium, were present in the 12 patients. In addition, both the plasma inorganic phosphate concentration (median and interquartile range: 1.28 [1.12-1.36] vs. 1.61 [1.51-1.66)] mmol/L) and the maximal tubular reabsorption of inorganic phosphate (1.08 [0.99-1.22] vs. 1.41 [1.38-1.47] mmol/L) were significantly lower (P < 0.001) in Gitelman patients than in control subjects. Circulating levels of 25-hydroxyvitamin D, intact parathyroid hormone and osteocalcin were similar in patients and controls.

Conclusions: The results of our case-control study disclose a hitherto unrecognized tendency towards renal phosphate wasting with mild to moderate hypophosphatemia in Gitelman syndrome.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00467-012-2297-3DOI Listing

Publication Analysis

Top Keywords

gitelman syndrome
16
inorganic phosphate
12
renal phosphate
8
patients gitelman
8
sodium chloride
8
urinary excretion
8
gitelman
6
phosphate
5
phosphate handling
4
handling gitelman
4

Similar Publications

Gitelman syndrome with diabetes and kidney stones: A case report.

Medicine (Baltimore)

January 2025

The Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China.

Rationale: Gitelman syndrome (GS) is a rare hereditary electrolyte disorder caused by mutations in the SLC12A3 gene. There is limited literature on the role of hydrochlorothiazide (HCT) testing and the SLC12A3 single heterozygous mutation in the diagnosis and management of patients with GS. In addition, cases of GS with concomitant kidney stones are rare.

View Article and Find Full Text PDF

Autoimmune Tubulopathies.

J Am Soc Nephrol

January 2025

Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, F-75006 Paris, France.

The renal tubule and collecting duct express a large number of proteins, all having putative immunoreactive motives. Therefore, all can be the target of pathogenic autoantibodies. However, autoimmune tubulopathies seem to be rare and we hypothesize that they are underdiagnosed.

View Article and Find Full Text PDF

The evolving concepts of KS-WNK1 effect on NCC activity.

Am J Physiol Renal Physiol

December 2024

Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, 14080 Mexico.

The field of the with no lysine kinases (WNKs) regulation of the thiazide-sensitive NaCl cotransporter (NCC) began at the start of the century with the discovery that mutations in two members of the family, WNK1 and WNK4, resulted in a condition known as Familiar Hyperkalemic Hypertension (FHHt). Since FHHt is the mirror image of Gitelman's syndrome that is caused by inactivating mutations of the SLC12A3 gene encoding NCC, it was expected that WNKs modulated NCC activity and that the increased function of the cotransporter is the pathophysiological mechanism of FFHt. This turned out to be the case.

View Article and Find Full Text PDF
Article Synopsis
  • Gitelman Syndrome (GS) is a rare genetic disorder that leads to low potassium and magnesium levels, alongside other metabolic issues, and presents unique challenges in managing these conditions during pregnancy.
  • A case study of a 20-year-old woman with GS highlights the use of amiloride, a medication typically used for GS, to successfully manage her persistent low potassium levels during pregnancy and lactation.
  • The treatment with amiloride effectively controlled her symptoms without causing any harmful effects on her newborn, suggesting potential safety for the mother and child under careful management.
View Article and Find Full Text PDF
Article Synopsis
  • - Gitelman syndrome (GS) is a rare genetic disorder leading to electrolyte imbalances, notably low potassium levels, due to a mutation in the SLC12A3 gene, affecting kidney function.
  • - A 35-year-old man with GS and severe hypokalemia was treated with finerenone, a new medication that helps increase potassium levels without the adverse effects commonly seen with other treatments like spironolactone.
  • - This case is significant as it represents the first reported use of finerenone for Gitelman syndrome, providing an alternative treatment option for patients unable to tolerate traditional therapies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!