We report two children, born from consanguineous parents, who presented with early-onset refractory epilepsy associated with psychomotor delay, failure to thrive, blindness and deafness. Polarographic and spectrophotometric analyses in fibroblasts and liver revealed a respiratory chain (RC) dysfunction. Surprisingly, we identified a homozygous nonsense mutation in the GM3 synthase gene by using exome sequencing. GM3 synthase catalyzes the formation of GM3 ganglioside from lactosylceramide, which is the first step in the synthesis of complex ganglioside species. Mass spectrometry analysis revealed that the complete absence of GM3 ganglioside and its biosynthetic derivatives was associated with an upregulation of the alternative globoside pathway in fibroblasts. The accumulation of Gb3 and Gb4 globosides likely has a role in RC dysfunction and in the decrease of mitochondrial membrane potential leading to apoptosis, which we observed in fibroblasts. We show for the first time that GM3 synthase deficiency, responsible for early-onset epilepsy syndrome, leads to a secondary RC dysfunction. Our study highlights the role of secondary mitochondrial disorders that can interfere with the diagnosis and the evolution of other metabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641379PMC
http://dx.doi.org/10.1038/ejhg.2012.202DOI Listing

Publication Analysis

Top Keywords

gm3 synthase
16
refractory epilepsy
8
synthase deficiency
8
gm3 ganglioside
8
gm3
6
epilepsy mitochondrial
4
dysfunction
4
mitochondrial dysfunction
4
dysfunction gm3
4
synthase
4

Similar Publications

Identification of a novel ST3GAL5 variant in a Chinese boy with GM3 synthase deficiency and literature review of variants in the ST3GAL5 gene.

Orphanet J Rare Dis

November 2024

Department of Medical Genetics / Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.

Background: GM3 synthase deficiency (GM3SD) is an autosomal recessive disorder resulting from mutations in the ST3GAL5 gene. It is characterized by intellectual disability, microcephaly, psychomotor and developmental delay, hearing and visual impairments, and changes in skin pigmentation. This study aims to broaden the genetic mutation spectrum of GM3SD through the report of a de novo mutation and a comprehensive summary of GM3SD phenotype to aid in genetic counseling and prenatal diagnosis.

View Article and Find Full Text PDF

Ganglioside GM3 synthase is a key enzyme involved in the biosynthesis of gangliosides. GM3 synthase deficiency (GM3SD) causes an absence of GM3 and all downstream biosynthetic derivatives, including all the a-, b-, c-series gangliosides, commonly found in neural tissues. The affected individuals manifest with severe irritability, intractable seizures, hearing loss, blindness, and profound intellectual disability.

View Article and Find Full Text PDF

Generation of a human induced pluripotent stem cell line from a patient with GM3 synthase deficiency using self-replicating RNA vector.

Stem Cell Res

June 2024

Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Neuroscience, Pharmacology and Child Health, University of Florence, Italy. Electronic address:

Article Synopsis
  • GM3 synthase deficiency (GM3SD) is linked to mutations in the ST3GAL5 gene, leading to severe symptoms like irritability, feeding issues, seizures, and hearing loss in infants.
  • Researchers created and studied a human induced pluripotent stem cell (hiPSC) line from a 13-year-old girl with GM3SD who had two new genetic variants in the ST3GAL5 gene.
  • The hiPSC line possesses a normal chromosome structure, expresses markers indicating pluripotency, and can develop into the three primary cell types in the body.
View Article and Find Full Text PDF

Ganglioside GM3 Protects Against Abdominal Aortic Aneurysm by Suppressing Ferroptosis.

Circulation

March 2024

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Institute of Cardiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China (F.Z., D.A.).

Background: Abdominal aortic aneurysm (AAA) is a potentially life-threatening vascular condition, but approved medical therapies to prevent AAA progression and rupture are currently lacking. Sphingolipid metabolism disorders are associated with the occurrence and development of AAA. It has been discovered that ganglioside GM3, a sialic acid-containing type of glycosphingolipid, plays a protective role in atherosclerosis, which is an important risk factor for AAA; however, the potential contribution of GM3 to AAA development has not been investigated.

View Article and Find Full Text PDF

Peritoneal dissemination of cancer affects patient survival. The behavior of peritoneal mesothelial cells (PMCs) and immune cells influences the establishment of a microenvironment that promotes cancer cell metastasis in the peritoneum. Here, we investigated the roles of lactosylceramide alpha-2,3-sialyltransferase (ST3G5; also known as ST3GAL5 and GM3 synthase) in the exosome-mediated premetastatic niche in peritoneal milky spots (MSs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!