https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=22990136&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=crude+oil&datetype=edat&usehistory=y&retmax=5&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_67957a8ee97a60af61002dab&query_key=1&retmode=xml&retmax=5&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09
The economic, environmental, and human health impacts of the deepwater horizon (DWH) oil spill have been of significant concern in the general public and among scientists. This study employs parallel experiments to test the effects of crude oil from the DWH oil well, chemical dispersant Corexit 9500A, and dispersant-oil mixture on growth and reproduction in the model organism Caenorhabditis elegans. Both the crude oil and the dispersant significantly inhibited the reproduction of C. elegans. Dose-dependent inhibitions of hatched larvae production were observed in worms exposed to both crude oil and dispersant. Importantly, the chemical dispersant Corexit 9500A potentiated crude oil effects; dispersant-oil mixture induced more significant effects than oil or dispersant-alone exposures. While oil-alone exposure and dispersant-alone exposure have none to moderate inhibitory effects on hatched larvae production, respectively, the mixture of dispersant and oil induced much more significant inhibition of offspring production. The production of hatched larvae was almost completely inhibited by several high concentrations of the dispersant-oil mixture. This suggests a sensitive bioassay for future investigation of oil/dispersant impacts on organisms. We also investigated the effects of crude oil/dispersant exposure at the molecular level by measuring the expressions of 31 functional genes. Results showed that the dispersant and the dispersant-oil mixture induced aberrant expressions of 12 protein-coding genes (cat-4, trxr-2, sdhb-1, lev-8, lin-39, unc-115, prdx-3, sod-1, acr-16, ric-3, unc-68, and acr-8). These 12 genes are associated with a variety of biological processes, including egg-laying, oxidative stress, muscle contraction, and neurological functions. In summary, the toxicity potentiating effect of chemical dispersant must be taken into consideration in future crude oil cleanup applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-012-0936-x | DOI Listing |
Plants (Basel)
January 2025
College of Life Sciences, Nankai University, Tianjin 300071, China.
Crude oil pollution of soil is an important issue that has serious effects on both the environment and human health. Phytoremediation is a promising approach to cleaning up oil-contaminated soil. In order to facilitate phytoremediation effects for oil-contaminated soil, this study set up a pot experiment to explore the co-application potentiality of L.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China.
The Bohai oilfield is characterized by severe heterogeneity and high average permeability, leading to a low water flooding recovery efficiency. Polymer flooding only works for a certain heterogeneous reservoir. Therefore, supplementary technologies for further enlarging the swept volume are still necessary.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
Metamaterials are pushing the limits of traditional materials and are fascinating frontiers in scientific innovation. Mechanical metamaterials (MMs) are a category of metamaterials that display properties and performances that cannot be realized in conventional materials. Exploring the mechanical properties and various aspects of vibration and damping control is becoming a crucial research area.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand.
This research examines the possibility of palm oil and oil palm trunk biochar (OPTB) from pyrolysis effectively serving as alternative processing oils and fillers, substituting petroleum-based counterparts in natural rubber (NR) composites. Chemical, elemental, surface and morphological analyses were used to characterize both carbon black (CB) and OPTB, by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) gas porosimetry, and scanning electron microscopy (SEM). The influences of OPTB contents from 0 to 100 parts per hundred rubber (phr) on thermal, dielectric, dynamic mechanical, and cure characteristics, and the key mechanical properties of particulate NR-composites were investigated.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!