Cobalt-silver (Co-Ag) core-shell nanoparticles with different silver thicknesses were prepared by the microemulsion method in a two-step reduction process. Transmission electron microscopy (TEM) characterization revealed the almost monodispersity and nanometric size (in the range 3-5 nm depending on the shell thickness) of the synthesized nanoparticles. However, it was the use of high-resolution TEM that revealed the correct core-shell formation of the nanometric material. The selected area electron diffraction pattern indicated the fcc (face-centered cubic) and hcp (hexagonal close packed) nature for silver and cobalt, respectively. Cyclic voltammetry also allowed the correct core-shell formation to be assured. The magnetic properties revealed the presence of both superparamagnetic and ferromagnetic contributions. Because of the lack of methodology, it was necessary to develop a method to measure the magnetotransport properties of the prepared nanoparticles. The strategy which followed was successful as it was possible to measure these properties: giant magnetoresistance values of 0.1% at room temperature were obtained. The numerical analysis of magnetic and magnetoresistance data indicated the presence of superparamagnetic particles showing interaction among the magnetic moments.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/23/40/405701DOI Listing

Publication Analysis

Top Keywords

giant magnetoresistance
8
correct core-shell
8
core-shell formation
8
presence superparamagnetic
8
measurement giant
4
magnetoresistance cobalt-silver
4
magnetic
4
cobalt-silver magnetic
4
magnetic nanostructures
4
nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!