We present a theoretical investigation of the influence of domain boundaries on the Ge/Si(111)-5 × 5 phase using both large-scale DFT simulations and an analytical model. It is shown that different boundary types modify the atomic and electronic structure of the adjoining 5 × 5 domains in very different ways. A simple theoretical model, that describes the energy interaction J between the boundaries and the 5 × 5 phase, is presented and the interaction energy decay J(x) ≈ x(-n) for different domain boundaries is estimated. Additionally, the influence of the boundaries on the atomic and electronic structure of adatoms in the parental 5 × 5 phase is analyzed and it is argued that the presence of domain boundaries may strongly affect not only the physical but also the chemical properties of the Ge/Si(111)-5 × 5 phase.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/24/44/445003DOI Listing

Publication Analysis

Top Keywords

domain boundaries
16
influence domain
8
boundaries ge/si111-5
8
ge/si111-5 phase
8
atomic electronic
8
electronic structure
8
boundaries
6
stability interaction
4
interaction influence
4
domain
4

Similar Publications

Motivation: In silico functional annotation of proteins is crucial to narrowing the sequencing-accelerated gap in our understanding of protein activities. Numerous function annotation methods exist, and their ranks have been growing, particularly so with the recent deep learning-based developments. However, it is unclear if these tools are truly predictive.

View Article and Find Full Text PDF

Multi-Strategy Improved Whale Optimization Algorithm and Its Engineering Applications.

Biomimetics (Basel)

January 2025

School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, China.

The Whale Optimization Algorithm (WOA) is recognized for its simplicity, few control parameters, and effective local optima avoidance. However, it struggles with global search efficiency and slow convergence. This paper introduces the Improved WOA (ImWOA) to overcome these challenges.

View Article and Find Full Text PDF

Biomimetics aims to learn from living systems to develop innovative technical artefacts. As it transcends disciplinary boundaries and needs to integrate both biological and technological knowledge, a domain ontology for biomimetics would be highly desirable. So far, several terminological resources have been designed to support the biomimetic development process.

View Article and Find Full Text PDF

A proof-of-concept study for precise mapping of pigmented basal cell carcinoma in asian skin using multispectral optoacoustic tomography imaging with level set segmentation.

Eur J Nucl Med Mol Imaging

January 2025

A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01, Nanos, Singapore, 138669, Republic of Singapore.

Purpose: Basal Cell Carcinoma (BCC), the most common subtype of non-melanoma skin cancers (NMSC), is prevalent worldwide and poses significant challenges due to their increasing incidence and complex treatment considerations. Existing clinical approaches, such as Mohs micrographic surgery, are time-consuming and labour-intensive, requiring meticulous layer-by-layer excision and examination, which can significantly extend the duration of the procedure. Current optical imaging solutions also lack the necessary spatial resolution, penetration depth, and contrast for effective clinical use.

View Article and Find Full Text PDF

Convolutional Neural Networks (CNNs) have achieved remarkable segmentation accuracy in medical image segmentation tasks. However, the Vision Transformer (ViT) model, with its capability of extracting global information, offers a significant advantage in contextual information compared to the limited receptive field of convolutional kernels in CNNs. Despite this, ViT models struggle to fully detect and extract high-frequency signals, such as textures and boundaries, in medical images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!