A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fast topological imaging. | LitMetric

Fast topological imaging.

Ultrasonics

PHASE Laboratory (EA 3028), Paul Sabatier University, Toulouse 3, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.

Published: December 2012

Mathematical optimization methods based on the topological sensitivity analysis have been used to develop innovative ultrasonic imaging methods. With a single illumination of the medium, they have proved experimentally to yield a lateral resolution comparable to classical multiple-illumination techniques. As these methods are based on the numerical simulations of two wave fields, they require extensive computation. A time-domain finite-difference scheme is usually used for that purpose. This paper presents the development of an experimental imaging method based on the topological sensitivity. The numerical cost is reduced by replacing the numerical simulations by simple mathematical operations between the radiation patterns of the array's transducers and the frequency-domain signals to be emitted. These radiation patterns are preliminary computed once and for all. They were obtained with a finite element model for the anisotropic elastodynamic case and with semi-analytical integrations for the acoustic case. Experimental results are presented for a composite material sample and for a prefractal network immersed in water. A lateral resolution below 2.5 times the wavelength is obtained with a single plane wave illumination. The method is also applied with multiple illuminations, so that objects hidden in complex media can be investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2012.08.002DOI Listing

Publication Analysis

Top Keywords

methods based
8
based topological
8
topological sensitivity
8
lateral resolution
8
numerical simulations
8
radiation patterns
8
fast topological
4
topological imaging
4
imaging mathematical
4
mathematical optimization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!