A previous genetic analysis comparing the Dahl salt-sensitive (S) rat with the spontaneously hypertensive rat identified a major locus on chromosome 2 that influences proteinuria in the S rat. In the present study, blood pressure, proteinuria, and renal hemodynamics were evaluated in congenic strains with small segments of the protective spontaneously hypertensive rat genome on the S background. Proteinuria and renal function were significantly improved in the congenic strains compared with the S. The causative locus interval was narrowed to <375 kb on the basis of congenic strains, haplotype data, comparative mapping, and concordance with human genetic studies. Sequencing of the coding region of genes in this region identified 36 single nucleotide polymorphisms (13 nonsynonymous and 23 synonymous). Gene expression profiling indicated that only a few genes exhibited differential expression. Arhgef11, Pear1, and Sh2d2 were identified as important candidate genes that may be linked to kidney injury in the S rat. In particular, Arhgef11 plays an important role in the activation of the Rho-ROCK signaling pathway. Inhibition of this pathway using fasudil resulted in a significant reduction of proteinuria in treated S rats (compared with untreated S). However, no difference was observed between treated or untreated spontaneously hypertensive rat or congenic strains. The homologous region in humans was found to be associated with estimated glomerular filtration rate in the Candidate Gene Association Resource population. In summary, these findings demonstrate that allelic variants in Arhgef11, acting through the Rho-ROCK pathway, could influence kidney injury in the S as well as provide insight into human kidney disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3505884PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.199240DOI Listing

Publication Analysis

Top Keywords

dahl salt-sensitive
8
salt-sensitive rat
8
spontaneously hypertensive
8
hypertensive rat
8
proteinuria renal
8
congenic strains
8
rat
5
genetic variants
4
variants arhgef11
4
arhgef11 associated
4

Similar Publications

Myocardial dysfunction is a crucial determinant of the development of heart failure in salt-sensitive hypertension. Ferroptosis, a programmed iron-dependent cell death, has been increasingly recognised as an important contributor to the pathophysiology of various cardiovascular diseases. This study aims to investigate the role and underlying mechanism of ferroptosis in high-salt (HS)-induced myocardial damage.

View Article and Find Full Text PDF

Radiation therapy (RT) is widely used to treat thoracic cancers but carries a risk of radiation-induced heart disease (RIHD). This study aimed to detect early markers of RIHD using machine learning (ML) techniques and cardiac MRI in a rat model. SS.

View Article and Find Full Text PDF

Increased lamina propria B cells play roles in fructose-induced hypertension of Dahl salt-sensitive rats.

Life Sci

January 2025

Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea. Electronic address:

Aims: Although the immune system participates in the development of hypertension, the proportional contributions of distinct immune cells remain poorly understood. With the development of transcriptomics, we can profile the transcriptomes of individual immune cells and assess the relative contribution of each immune cell to the development of hypertension. So, we tested the hypothesis that increased lamina propria B cells play roles in fructose-induced hypertension of Dahl salt-sensitive (SS) rats.

View Article and Find Full Text PDF

The pathogenesis of heart failure with preserved ejection fraction (HFpEF) remains unclear, and effective treatments are limited. HFpEF is more prevalent in females, indicating potential gender differences in its pathogenesis. However, no female HFpEF model animals have been established.

View Article and Find Full Text PDF

Background: Salt-sensitive hypertension (SSH) is the most severe form of hypertension, and the presence of NLRP3 inflammasome plays a crucial role in its pathogenesis. Although MCC950 has shown therapeutic potential for hypertension and kidney injury, its mechanism of action remains unclear.

Methods: Dahl salt-sensitive (SS) rats and their salt-tolerant aptamer control SS-13 (BN) rats were randomly assigned to four groups: SS rats intraperitoneally administered physiological saline (SS + vehicle) or MCC950 (SS + MCC950), and BN rats intraperitoneally administered physiological saline (BN + vehicle) or MCC950 (BN + MCC950).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!