Peripapillary atrophy detection by sparse biologically inspired feature manifold.

IEEE Trans Med Imaging

iMED Ocular Imaging Programme, Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore.

Published: December 2012

Peripapillary atrophy (PPA) is an atrophy of pre-existing retina tissue. Because of its association with eye diseases such as myopia and glaucoma, PPA is an important indicator for diagnosis of these diseases. Experienced ophthalmologists are able to determine the presence of PPA using visual information from the retinal images. However, it is tedious, time consuming and subjective to examine all images especially in a screening program. This paper presents biologically inspired feature (BIF) for the automatic detection of PPA. BIF mimics the process of cortex for visual perception. In the proposed method, a focal region is segmented from the retinal image and the BIF is extracted. As BIF is an intrinsically low dimensional feature embedded in a high dimensional space, it is not suitable to measure the similarity between two BIFs directly based on the Euclidean distance. Therefore, it is necessary to obtain a suitable mapping to reduce the dimensionality. In this paper, we explore sparse transfer learning to transfer the label information from ophthalmologists to the sample distribution knowledge contained in all samples. Selective pair-wise discriminant analysis is used to define two strategies of sparse transfer learning: negative and positive sparse transfer learning. Experimental results show that negative sparse transfer learning is superior to the positive one for this task. The proposed BIF based approach achieves an accuracy of more than 90% in detecting PPA, much better than previous methods. It can be used to save the workload of ophthalmologists and thus reduce the diagnosis costs.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2012.2218118DOI Listing

Publication Analysis

Top Keywords

sparse transfer
16
transfer learning
16
peripapillary atrophy
8
biologically inspired
8
inspired feature
8
sparse
5
ppa
5
bif
5
transfer
5
atrophy detection
4

Similar Publications

Improving ocean reanalyses of observationally sparse regions with transfer learning.

Sci Rep

January 2025

Institute of Oceanography, Center for Earth System Sustainability, Universität Hamburg, Hamburg, Germany.

Oceanic subsurface observations are sparse and lead to large uncertainties in any model-based estimate. We investigate the applicability of transfer learning based neural networks to reconstruct North Atlantic temperatures in times with sparse observations. Our network is trained on a time period with abundant observations to learn realistic physical behavior.

View Article and Find Full Text PDF

A balanced and equitable bus network layout plays a crucial role in the efficient operation of cities. The layout of urban bus networks is influenced by various factors, including urban planning, population size, industrial distribution, and road network layout. Forming a comprehensive indicator system and analyzing the balance and fairness of bus network layouts are key research areas.

View Article and Find Full Text PDF

Automatic medical imaging segmentation via self-supervising large-scale convolutional neural networks.

Radiother Oncol

January 2025

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; Department of Biomedical Engineering, Emory University and Georgia Institute of Technology Atlanta, GA 30308, USA. Electronic address:

Purpose: This study aims to develop a robust, large-scale deep learning model for medical image segmentation, leveraging self-supervised learning to overcome the limitations of supervised learning and data variability in clinical settings.

Methods And Materials: We curated a substantial multi-center CT dataset for self-supervised pre-training using masked image modeling with sparse submanifold convolution. We designed a series of Sparse Submanifold U-Nets (SS-UNets) of varying sizes and performed self-supervised pre-training.

View Article and Find Full Text PDF

Skin Cancer Detection Using Transfer Learning and Deep Attention Mechanisms.

Diagnostics (Basel)

January 2025

College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia.

Early and accurate diagnosis of skin cancer improves survival rates; however, dermatologists often struggle with lesion detection due to similar pigmentation. Deep learning and transfer learning models have shown promise in diagnosing skin cancers through image processing. Integrating attention mechanisms (AMs) with deep learning has further enhanced the accuracy of medical image classification.

View Article and Find Full Text PDF

Contrastive learning of T cell receptor representations.

Cell Syst

January 2025

Division of Infection and Immunity, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK. Electronic address:

Computational prediction of the interaction of T cell receptors (TCRs) and their ligands is a grand challenge in immunology. Despite advances in high-throughput assays, specificity-labeled TCR data remain sparse. In other domains, the pre-training of language models on unlabeled data has been successfully used to address data bottlenecks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!