Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In diverse brain pathologies, astrocytes become reactive and undergo profound phenotypic changes. Connexin43 (Cx43), the main gap junction channel-forming protein in astrocytes, is one of the proteins modified in reactive astrocytes. Downregulation of Cx43 in cultured astrocytes activates c-Src, promotes proliferation, and increases the rate of glucose uptake; however, so far there have been no studies examining whether this cascade of events takes place in reactive astrocytes. In this work, we analyzed this pathway after a cortical lesion induced by a kainic acid injection. As previously described, astrocytes reacted to the lesion with an increase in glial fibrillary acidic protein and a decrease in Cx43 expression. Some of these reactive astrocytes proliferated, as estimated by bromodeoxyuridine incorporation and cyclins D1 and D3 upregulation. In addition, the expression of the glucose transporter GLUT-3 and the enzyme responsible for glucose phosphorylation, Type II hexokinase (Hx-2), were induced in reactive astrocytes, suggesting an increased glucose uptake. Previous in vitro studies reported that c-Src is the link between Cx43 and glucose uptake and proliferation in astrocytes. Here, we found that c-Src activity increased in the lesioned area. c-Src activation and Cx43 downregulation preceded the peak of Hx-2 and cyclin D3 expression, suggesting that c-Src could mediate the effect of Cx43 on glucose uptake and proliferation in reactive astrocytes after an excitotoxic insult. Interestingly, we identify c-Src, GLUT-3, and Hx-2 in the signaling mechanisms involved in the reaction of astroglia to injury. Altogether these data contribute to identify new therapeutical targets to enhance astrocyte neuroprotective activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/glia.22418 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!