Oxidative pyrolysis of polystyrene into styrene monomers in an autothermal fixed-bed catalytic reactor.

ChemSusChem

Department of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, USA.

Published: October 2012

Styrene monomer recovery: A selective stream of styrene from fast pyrolysis of polystyrene is obtained with an autothermal fixed-bed reactor containing noble-metal (Rh, Pt) catalysts. Autothermal fast pyrolysis of polystyrene is an efficient means of recovering monomers from waste polystyrene in a continuous, high-throughput process without external heating.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201200412DOI Listing

Publication Analysis

Top Keywords

pyrolysis polystyrene
12
autothermal fixed-bed
8
fast pyrolysis
8
oxidative pyrolysis
4
polystyrene
4
polystyrene styrene
4
styrene monomers
4
monomers autothermal
4
fixed-bed catalytic
4
catalytic reactor
4

Similar Publications

Assessing the Efficacy of Pyrolysis-Gas Chromatography-Mass Spectrometry for Nanoplastic and Microplastic Analysis in Human Blood.

Environ Sci Technol

January 2025

Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.

Humans are constantly exposed to micro- and nanosized plastics (MNPs); however, there is still limited understanding of their fate within the body, partially due to limitations with current analytical techniques. The current study assessed the appropriateness of pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis for the quantification of a range of polymers in human blood. An extraction protocol that reduced matrix interferences (false positives) of polyethylene (PE) and polyvinyl chloride (PVC) was developed and validated.

View Article and Find Full Text PDF

Micro-nanoscale polystyrene co-exposure impacts the uptake and translocation of arsenic and boscalid by lettuce (Lactuca sativa).

NanoImpact

January 2025

Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT, USA.

The influence of micro-nanoplastics (MNPs) on the fate and effects of other pollutants present in the environment is largely unknown. This study evaluated if the root exposure to MNPs (polystyrene, PS; 20 or 1000 nm) had an impact on the accumulation of arsenic and boscalid (As and Bos) in lettuce (Lactuca sativa). Under hydroponic conditions, plants were co-exposed to MNPs at 10 or 50 mg/L, and to 1 mg/L of each environmental pollutant (EP).

View Article and Find Full Text PDF

The increasing global demand for plastic has raised the need for effective waste plastic management due to its long lifetime and resistance to environmental degradation. There is a need for rapid plastic identification to improve the mechanical waste plastic sorting process. This study presents a novel application of Temperature-Programmed Desorption-Direct Analysis in Real Time-High Resolution Mass Spectrometry (TPD-DART-HRMS) that enables rapid characterization of various plastics.

View Article and Find Full Text PDF

Pyrolysis is recognized as a promising technology for waste plastics management. Although there have been many studies on pyrolysis of waste plastics, there is still a lack of in-depth research on the mechanism of synergistic effect between mixed plastics and the mechanism of product formation. In this paper, based on the pyrolysis characteristics of Polystyrene, Polyethylene, and mixed plastics (Polystyrene/Polyethylene), it is demonstrated that a synergistic effect exists in the co-pyrolysis of Polystyrene/Polyethylene and affects the pyrolysis behavior and pyrolysis products.

View Article and Find Full Text PDF

Sustainable approach to polystyrene management and bioinsecticide production: Biodegradation by Tenebrio molitor larvae co-fed with residual biomass and bioactivity of frass pyrolysis bio-oil against insect pests.

Bioresour Technol

December 2024

Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (CONICET-UNS), San Juan 671, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, 8000 Bahía Blanca, Argentina. Electronic address:

Tenebrio molitor has gained attention as a potential solution for plastic pollution. This study explored the biodegradation of polystyrene (PS) by mealworms co-fed with rice bran (RB) under an optimized rearing scheme. The RB co-diet significantly increased PS consumption by two-fold compared to wheat bran (WB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!