SIRT1 pathway dysregulation in the smoke-exposed airway epithelium and lung tumor tissue.

Cancer Res

Section of Computational Biomedicine, Department of Medicine, Boston University Medical Center; Bioinformatics Program, Boston University, Boston, Massachusetts, USA.

Published: November 2012

Cigarette smoke produces a molecular field of injury in epithelial cells lining the respiratory tract. However, the specific signaling pathways that are altered in the airway of smokers and the signaling processes responsible for the transition from smoking-induced airway damage to lung cancer remain unknown. In this study, we use a genomic approach to study the signaling processes associated with tobacco smoke exposure and lung cancer. First, we developed and validated pathway-specific gene expression signatures in bronchial airway epithelium that reflect activation of signaling pathways relevant to tobacco exposure, including ATM, BCL2, GPX1, NOS2, IKBKB, and SIRT1. Using these profiles and four independent gene expression datasets, we found that SIRT1 activity is significantly upregulated in cytologically normal bronchial airway epithelial cells from active smokers compared with nonsmokers. In contrast, this activity is strikingly downregulated in non-small cell lung cancer. This pattern of signaling modulation was unique to SIRT1, and downregulation of SIRT1 activity is confined to tumors from smokers. Decreased activity of SIRT1 was validated using genomic analyses of mouse models of lung cancer and biochemical testing of SIRT1 activity in patient lung tumors. Together, our findings indicate a role of SIRT1 in response to smoke and a potential role in repressing lung cancer. Furthermore, our findings suggest that the airway gene expression signatures derived in this study can provide novel insights into signaling pathways altered in the "field of injury" induced by tobacco smoke and thus may impact strategies for prevention of tobacco-related lung cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053174PMC
http://dx.doi.org/10.1158/0008-5472.CAN-12-1043DOI Listing

Publication Analysis

Top Keywords

lung cancer
24
signaling pathways
12
gene expression
12
sirt1 activity
12
sirt1
8
airway epithelium
8
lung
8
epithelial cells
8
pathways altered
8
signaling processes
8

Similar Publications

Background: Lung cancer is the first cause of cancer-related death. Awake lung resection is a new frontier of the concept of minimally invasive surgery. Our purpose is to demonstrate the feasibility of this technique for lobar and sublobar lung resection in NSCLC patients.

View Article and Find Full Text PDF

Background: Metabolic pathways are known to significantly impact the development and advancement of lung cancer. This study sought to establish a signature related to butyrate metabolism that is specifically linked to lung adenocarcinoma (LUAD).

Methods: For the purpose of identifying butyrate metabolism-related differentially expressed genes (BMR-DEGs) in the TCGA-LUAD dataset, we introduced transcriptome data.

View Article and Find Full Text PDF

LncRNA MANCR is downregulated in non-small cell lung cancer and predicts poor survival.

Discov Oncol

January 2025

Spinal Surgery Department, the Fourth People's Hospital of Jinan, No.50 Normal Road, Tianqiao District, Jinan, 250031, Shandong, China.

Background: It is known that genomic instability contributes to cancer development. Mitotically associated long non-coding RNA (MANCR) has been reported to promote genomic stability, suggesting its involvement in cancers. Therefore, this study was conducted to investigate the role of MANCR in non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

The prognosis and treatment efficacy of lung adenocarcinoma (LUAD), a disease with a high incidence, remains unsatisfactory. Identifying new biomarkers and therapeutic targets for LUAD is essential. Chromosomal assembly factor 1B (CHAF1B), a p60 component of the CAF-1 complex, is closely linked to tumor incidence and cell proliferation.

View Article and Find Full Text PDF

Background: Plasma proteins contribute to the identification, diagnosis, and prognosis of human illnesses, which may be conducive to understanding the molecular mechanism and diagnosis of Lung adenocarcinoma (LUAD).

Methods: We collected plasma samples from 28 healthy individuals (H) and 56 LUAD patients and analyzed them using LC-MS/MS-based proteomics to determine differential expression plasma proteins (DEPPs). Then, the DEPPs were subjected to a two-sample Mendelian randomization (MR) study based on an "Inverse variance weighted (IVW)" approach to investigate the causal relationships between DEPPs and LUAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!