A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A ring capacitor applicator in hyperthermia: energy distributions in a fat-muscle layered model for different ring electrode configurations. | LitMetric

The energy deposition pattern within a radially layered fat-muscle phantom, diameter 135 mm, heated by a novel ring capacitor applicator has been determined experimentally as well as theoretically. Good to excellent agreement is found between measured and predicted energy distributions. For the specific absorption rate in the muscle tissue the differences are in general smaller than 6%. When the ring electrodes are placed directly on the phantom surface both measured and predicted energy distributions show the presence of superficial hot spots located within the fat layer at the site of the ring electrodes. The theoretical distributions showed that the radial component of the E-field contributes for more than 90% to the energy absorption at the hot spot in the fatty tissue in front of the ring electrodes. Introducing a small air gap (10 mm) between the phantom surface and the ring electrode results in a decrease of the energy absorption within the fatty tissue at the hot spot location by 30%. Further theoretical analysis of the energy distribution within the inhomogeneous model showed that the intensity of the hot spots at the ring electrodes can be controlled by adjustment of the applicator configuration. Independent of the size of the electrode to phantom gap the specific absorption rate values predicted in the fat-muscle model show a more favorable distribution at a frequency of 27.12 MHz than at 13.56 MHz. For a similar electrode to phantom gap the specific absorption rate within the fatty tissue is approximately two times lower at 27.12 than at 13.56 MHz. For the model calculations performed the best ratio of fat to muscle SAR (0.2) is obtained with distilled water as bolus medium in the gap.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0360-3016(90)90270-tDOI Listing

Publication Analysis

Top Keywords

ring electrodes
16
energy distributions
12
specific absorption
12
absorption rate
12
fatty tissue
12
ring
8
ring capacitor
8
capacitor applicator
8
ring electrode
8
measured predicted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!