The modulation of the quadratic NLO response of an octupolar metal-based chromophore featuring four photochromic dithienylethene units is reported. Quantum mechanical simulations are consistent with a full switching of the DTE units and reproduce the strong enhancement of the NLO response.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2cc34999jDOI Listing

Publication Analysis

Top Keywords

nlo response
8
photoswitching second-order
4
second-order nonlinearity
4
nonlinearity tetrahedral
4
tetrahedral octupolar
4
octupolar multi
4
multi dte-based
4
dte-based copperi
4
copperi complex
4
complex modulation
4

Similar Publications

Transition metal based optical limiting materials have garnered significant attention due their crucial role in protecting sensitive optical system from high intense laser damage. Transition metal molybdates exhibits nonlinear optical (NLO) response, which attenuate highly intense light by transmitting light of desired intensity. Herein we report Silver molybdate (AgMoO) nanostructures doped with erbium (Er) ions were successfully synthesized by simple co-precipitation technique.

View Article and Find Full Text PDF

Two-dimensional (2D) materials with spontaneous polarization can exhibit large second-order nonlinear optical (NLO) effects. Here, we present a series of stable distorted monolayers by using first-principles calculations and lattice vibration analysis. The structural distortion leads to a lower polar symmetry, giving rise to intrinsic ferroelectricity with a Curie point up to room temperature.

View Article and Find Full Text PDF

Co-assemblies of Silver Nanoclusters and Fullerenols With Enhanced Third-Order Nonlinear Optical Response.

Small Methods

January 2025

National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.

View Article and Find Full Text PDF

A HTO-Type Nonlinear Optical Fluorophosphate with Ultrawide Bandgap.

Small

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

Compounds having hexagonal tungsten oxides (HTO) topology are of intense research interests owing to their potential functional properties, such as nonlinear optical (NLO) performances. However, most of the reported HTO-type compounds exhibit narrow optical bandgaps because of the d-d electronic transition of compositional d transition metals and lone pair electrons effect of Se/Te, which hinder their applications in the high-energy field, such as deep-ultraviolet (deep-UV) region. In this work, a new fluorophosphate, (NH)[ScF(PO)](POF) exhibiting HTO-topological structures is reported.

View Article and Find Full Text PDF

Mechanical Twisting-Induced Enhancement of Second-Order Optical Nonlinearity in a Flexible Molecular Crystal.

J Am Chem Soc

January 2025

School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China.

Flexible molecular crystals are essential for advancing smart materials, providing unique functionality and adaptability for applications in next-generation electronics, pharmaceuticals, and energy storage. However, the optical applications of flexible molecular crystals have been largely restricted to linear optics, with nonlinear optical (NLO) properties rarely explored. Herein, we report on the application of mechanical twisting of flexible molecular crystals for second-order nonlinear optics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!