Fluoride is the mainstay of dental caries prevention, and yet current applications offer incomplete protection and may not effectively address the infectious character of the disease. Therefore, we evaluated the effectiveness of a novel combination therapy (CT; 2 mM myricetin, 4 mM tt-farnesol, 250 ppm of fluoride) that supplements fluoride with naturally occurring, food-derived, antibiofilm compounds. Treatment regimens simulating those experienced clinically (twice daily for ≤60 s) were used both in vitro over a saliva-coated hydroxyapatite biofilm model and in vivo with a rodent model of dental caries. The effectiveness of CT was evaluated based on the incidence and severity of carious lesions (compared to fluoride or vehicle control). We found that CT was superior to fluoride (positive control, P < 0.05); topical applications dramatically reduced caries development in Sprague-Dawley rats, all without altering the Streptococcus mutans or total populations within the plaque. We subsequently identified the underlying mechanisms through which applications of CT modulate biofilm virulence. CT targets expression of key Streptococcus mutans genes during biofilm formation in vitro and in vivo. These are associated with exopolysaccharide matrix synthesis (gtfB) and the ability to tolerate exogenous stress (e.g., sloA), which are essential for cariogenic biofilm assembly. We also identified a unique gene (SMU.940) that was severely repressed and may represent a potentially novel target; its inactivation disrupted exopolysaccharide accumulation and matrix development. Altogether, CT may be clinically more effective than current anticaries modalities, targeting expression of bacterial virulence associated with pathogenesis of the disease. These observations may have relevance for development of enhanced therapies against other biofilm-dependent infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497192PMC
http://dx.doi.org/10.1128/AAC.01381-12DOI Listing

Publication Analysis

Top Keywords

streptococcus mutans
12
dental caries
8
fluoride
5
novel antibiofilm
4
antibiofilm chemotherapy
4
chemotherapy targets
4
targets exopolysaccharide
4
exopolysaccharide synthesis
4
synthesis stress
4
stress tolerance
4

Similar Publications

Unlabelled: Dental caries remains a prevalent chronic disease driven by dysbiosis in the oral biofilm, with playing a central role in its pathogenesis.

Objective: This study aimed to assess the effect of D-tagatose on cariogenic risk by analyzing randomized clinical trials (RCTs).

Methods: A systematic literature review was conducted targeting RCTs published up to 2024 in eight databases and two gray literature sources.

View Article and Find Full Text PDF

Agricultural food waste and by-products could provide high-value compounds that positively affect human and environmental health, thus representing promising ingredients for cosmeceutical products. This study explores the biological activities of tomato skin (HP) and pomegranate peel (PPE) extracts on oral mucosa to evaluate their possible use in mouthwashes. The biological activities of the extracts and the mouthwash (MW) containing them were evaluated in Human Primary Gingival Epithelial cells (HGECs).

View Article and Find Full Text PDF

ANTIMICROBIAL ACTION OF A MODIFIED UNIVERSAL ADHESIVE: AN IN VITRO STUDY.

Georgian Med News

November 2024

2Department of Conservative Dentistry, College of Dentistry, University of Mosul, Iraq.

Background: Resin composites and dental adhesives are widely used to restore carious teeth. A relatively new category of the dental adhesives, the universal adhesives (UAs) is considered user friendly because of its simplicity to use and compatibility with any adhesive strategy. However, the adhesive interface created by these adhesives is highly susceptible to cracking after polymerization which in turn facilitates the initiation of secondary caries.

View Article and Find Full Text PDF

Objectives: This study aimed to evaluate and compare the antibacterial properties and optical characteristics of clear orthodontic aligners coated with zinc oxide (ZnO) and magnesium oxide (MgO) nanoparticles.

Materials And Methods: In this experimental laboratory study, polyethylene terephthalate glycol (PETG) aligner samples were coated with nanoparticles of ZnO, MgO and a combination of both (ZnO + MgO). The surface coatings were analysed before and after stability testing using field emission scanning electron microscopy (FESEM).

View Article and Find Full Text PDF

Comparative in Vitro Study on the Antimicrobial Efficacy of Endodontic Sealers Against Common Oral Pathogens.

Dent J (Basel)

December 2024

Department of Odontology and Oral Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 38 Gh. Marinescu Str., 540139 Târgu Mureș, Romania.

: Microorganisms are the leading cause of infections in the root canal system, contributing to the failure of endodontic treatments. This in vitro study aimed to compare the antimicrobial effects of four different endodontic sealers: Endomethasone N (Septodont, Saint Maur-des-Fossés, France), Sealapex (Kerr Corporation, Orange, CA, USA), AH Plus Jet (Dentsply DeTrey GmbH, Konstanz, Germany), and MTA Fillapex (Angelus, Londrina, Brazil). : The sealers were tested against common oral pathogens, including Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Candida albicans, and Streptococcus mutans, using the agar diffusion method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!