Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance.

Bioresour Technol

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 211816, PR China.

Published: May 2013

A Clostridium beijerinckii mutant RT66 with considerable inhibitor-tolerance obtained by continuous culture was used for butanol production from non-detoxified hemicellulosic hydrolysate of corn fiber treated with dilute sulfuric acid (SAHHC). In fed-batch fermentation, 1.8L of diluted SAHHC containing 10 g/L of reducing sugar was provided during the acidogenic phase and 0.2L of concentrated SAHHC containing 300 g/L of reducing sugar was provided during the solventogenic phase. The mutant produced a total amount of solvents of 12.9 g/L, which consisted of 3.1 g/L of acetone, 9.3 g/L of butanol and 0.5 g/L of ethanol. A solvent yield of 0.35 g/g sugar and a productivity of 0.18 g/L h in 72 h were achieved. The remarkable inhibitor-tolerance of C. beijerinckii RT66 demonstrates that this may be an excellent strain for butanol production from ligocellulosic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2012.08.029DOI Listing

Publication Analysis

Top Keywords

butanol production
12
hemicellulosic hydrolysate
8
hydrolysate corn
8
corn fiber
8
clostridium beijerinckii
8
beijerinckii mutant
8
g/l reducing
8
reducing sugar
8
sugar provided
8
g/l
7

Similar Publications

Enhancing Biodegradation of Insoluble High Molecular Weight Polycyclic Aromatic Hydrocarbons in Macroemulsion (ME) Bioreactors with a Liquid-Liquid Interface.

ACS Appl Mater Interfaces

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, China.

Due to the low bioavailability and insolubility of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in aqueous solutions, their degradation efficiency is significantly limited in wastewater treatment and environmental remediation. To address this challenge, we designed oil-in-water (O/W) macroemulsion (ME) bioreactors with mixed surfactants (Tween-80 and Triton X-100), -butanol, corn oil, and () to enhance the degradation efficiency of pyrene. Owing to the higher solubility of pyrene in MEs, it could be easily adsorbed onto hydrophobic groups on the cell surface.

View Article and Find Full Text PDF

Enhancing the co-utilization of methanol and CO into 1-butanol by equipping synergistic reductive glycine pathway in Butyribacterium methylotrophicum.

Bioresour Technol

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China. Electronic address:

The biological fixation of CO and C1-feedstocks like methanol derived from CO are considered as an important technology combating in global warming issues. The microorganisms that can co-assimilate CO and methanol are highly desired. Here, we constructed a synergistic assimilation pathway in Butyribacterium methylotrophicum (B.

View Article and Find Full Text PDF

The catalytic performance of Candida antarctica lipase B (CALB) immobilized on silica-coated magnetic nanoparticles was evaluated for biodiesel production via methanolysis of rapeseed oil. Two different covalent immobilization approaches were compared to assess the effect of immobilization protocols on lipase efficiency. The first approach involved immobilization of CALB on amine-functionalized magnetic nanoparticles (MNPs), which targeted the Lys-rich regions of the enzyme.

View Article and Find Full Text PDF

is a microorganism for production of 1,3-propanediol (1,3-PDO) and butanol, but suffers from lacking genetic tools for metabolic engineering to improve product titers. Furthermore, previous studies of have mainly focused on single genomic modification. The aim of this work is the development and application of a method for modification of multiple gene targets in the genome of .

View Article and Find Full Text PDF

This study evaluated the impact of fermentation with Lactobacillus acidophilus pre-subjected to acid, osmotic, and oxidative stress conditions on the production of metabolites and the bioaccessibility of nutrients and bioactive compounds in fermented milks and yogurts. The products were added with orange bagasse (additional calcium - Ca source) and buriti pulp (carotenoids source). Gas chromatography coupled with mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) were used to analyze the volatile and non-volatile compounds metabolites from fermentation, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!