Fractone-heparan sulfates mediate BMP-7 inhibition of cell proliferation in the adult subventricular zone.

Neurosci Lett

Dept. of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, Biomed T401, 1960 East-West Rd, University of Hawaii, Honolulu, HI 96822, USA.

Published: October 2012

Bone morphogenetic protein-7 (BMP-7) is a heparin-binding growth factor that inhibits cell proliferation in the subventricular zone (SVZ) of the lateral ventricle, the primary neurogenic niche in the adult brain. However, the physiological mechanisms regulating the activity of BMP-7 in the SVZ are unknown. Here, we report the inhibitory effect of BMP-7 on cell proliferation through the anterior SVZ after intracerebroventricular injection in the adult mouse. To determine whether the inhibition of cell proliferation induced by BMP-7 is dependant on heparin-binding, heparitinase-1 was intracerebroventricularly injected to N-desulfate heparan sulfate proteoglycans before BMP-7 was injected. Heparatinase-1 drastically reduced the inhibitory effect of BMP-7 on cell proliferation in the SVZ. To determine where BMP-7 binds within the niche, we visualized biotinylated-BMP-7 after intracerebroventricular injection, using streptavidin Texas red on frozen brain sections. BMP-7 binding was seen as puncta in the SVZ at the location of fractones, the particulate specialized extracellular matrix of the SVZ, which have been identified primarily by N-sulfated heparan sulfate immunoreactivity (NS-HS+). BMP binding was also seen in NS-HS+ blood vessels of the SVZ. Injection of heparitinase-1 prior to biotinylated BMP-7 resulted in the absence of signal for biotinylated-BMP-7 in the fractones and blood vessels, indicating that the binding is heparan sulfate dependant. These results indicate that BMP-7 requires heparan sulfates to bind and inhibit cell proliferation in the SVZ neurogenic niche. Heparan sulfates concentrated in fractones and SVZ blood vessels emerge as a functional stem cell niche component involved in growth factor activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2012.08.077DOI Listing

Publication Analysis

Top Keywords

cell proliferation
24
heparan sulfate
12
blood vessels
12
bmp-7
11
svz
9
inhibition cell
8
subventricular zone
8
growth factor
8
neurogenic niche
8
inhibitory bmp-7
8

Similar Publications

Objective: Endometrial cancer (EC) is a malignant tumor with various histological subtypes and molecular phenotypes. The evaluation of drug resistance is important for cancer treatment. Progesterone resistance is the major challenge in EC.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common malignant primary brain tumor, with a mean survival of less than 2 years. Unique brain structures and the microenvironment, including blood-brain barriers, put great challenges on clinical drug development. Sophoricoside (Sop), an isoflavone glycoside isolated from seeds of Sophora japonica L.

View Article and Find Full Text PDF

Introduction: Angioimmunoblastic T-cell lymphoma (AITL) is a rare and aggressive lymphoma with a poor prognosis. AITL is associated with Epstein-Barr virus (EBV)-positive B cells in most cases, suggesting a possible role for the virus in the pathobiology of AITL. Cell lines from AITL patients do not exist and models of human AITL are needed.

View Article and Find Full Text PDF

Unlabelled: Engineered three-dimensional (3D) tissue culture platforms are useful for reproducing and elucidating complex in vivo biological phenomena. Spheroids, 3D aggregates of living cells, are produced based on physicochemical or microfabrication technologies and are commonly used even in cancer pathology research. However, conventional methods have difficulties in constructing 3D structures depending on the cell types, and require specialized techniques/lab know-how to reproducibly control the spheroid size and shape.

View Article and Find Full Text PDF

Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation.

In Vitro Model

December 2024

Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil.

Obesity is associated with several comorbidities that cause high mortality rates worldwide. Thus, the study of adipose tissue (AT) has become a target of high interest because of its crucial contribution to many metabolic diseases and metabolizing potential. However, many AT-related physiological, pathophysiological, and toxicological mechanisms in humans are still poorly understood, mainly due to the use of non-human animal models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!