While the unique elastic properties of monolayer graphene have been extensively investigated, less knowledge has been developed so far on folded graphene. Nevertheless, it has been recently suggested that fold-induced curvature (without in-plane strain) could possibly affect the local chemical and electron transport properties of graphene, envisaging a material-by-design approach where tailored membranes are used in enhanced nanoresonators or nanoelectromechanical devices. In this work we propose a novel method combining apparent strain analysis from high-resolution transmission electron microscopy (HREM) images and theoretical modeling based on continuum elasticity theory and tight-binding atomistic simulations to map and measure the nanoscale curvature of graphene folds and wrinkles. If enough contrast and resolution in HREM images are obtained, this method can be successfully applied to provide a complete nanoscale geometrical and physical picture of 3D structure of various wrinkle and fold configurations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl3023737 | DOI Listing |
Nanomaterials (Basel)
January 2025
Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
We present a versatile method for synthesizing high-quality molybdenum disulfide (MoS) crystals on graphite foil edges via chemical vapor deposition (CVD). This results in MoS/graphene heterostructures with precise epitaxial layers and no rotational misalignment, eliminating the need for transfer processes and reducing contamination. Utilizing in situ transmission electron microscopy (TEM) equipped with a nano-manipulator and tungsten probe, we mechanically induce the folding, wrinkling, and tearing of freestanding MoS crystals, enabling the real-time observation of structural changes at high temporal and spatial resolutions.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Shandong Key Laboratory of Medical and Health Textile Materials, Qingdao University, Qingdao 266071, China.
Although materials with infrared camouflage capabilities are increasingly being produced, few applications exist in clothing fabrics. Here, graphene/MXene-modified fabric with superior infrared camouflage, Joule heating, and electromagnetic shielding capabilities all in one was prepared by simply scraping a graphene slurry onto alkali-treated cotton fabrics, followed by spraying MXene. The functionality of the modified fabrics after different treatment times was then tested and analyzed.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:
The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Understanding the behavior and fate of microplastics (MPs) in aquatic environment is crucial for assessing their potential risks. This study investigated the heteroaggregation behaviors of MPs with representative 2D nanosheets, MoS and graphene oxide (GO), under various conditions, focusing on the transport behavior of the resulting aggregates. It was found that the destabilization capabilities of 2D nanosheets are notably stronger than those of well-reported nanoparticles.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China.
Freestanding nanomembranes fabricated by lift-off technology have been widely utilized in microelectromechanical systems, soft electronics, and microrobotics. However, a conventional chemical etching strategy to eliminate nanomembrane adhesion often restricts material choice and compromises quality. Herein, we propose a nanomembrane-on-graphene strategy that leverages the weak van der Waals adhesion on graphene to achieve scalable and controllable release and 3D construction of nanomembranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!