Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pore size distribution of mesoporous thin films is herein investigated through a reliable and versatile technique coined specular reflectance porosimetry. This method is based on the analysis of the gradual shift of the optical response of a porous slab measured in quasi-normal reflection mode that occurs as the vapor pressure of a volatile liquid varies in a closed chamber. The fitting of the spectra collected at each vapor pressure is employed to calculate the volume of solvent contained in the interstitial sites and thus to obtain adsorption-desorption isotherms from which the pore size distribution and internal and external specific surface areas are extracted. This technique requires only a microscope operating in the visible range attached to a spectrophotometre. Its suitability to analyze films deposited onto arbitrary substrates, one of the main limitations of currently employed ellipsometric porosimetry and quartz balance techniques, is demonstrated. Two standard mesoporous materials, supramolecularly templated mesostructured films and packed nanoparticle layers, are employed to prove the concept proposed herein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la3025793 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!