The coccolithophore Emiliania huxleyi plays a pivotal role in the marine carbon cycle. However, we have only limited understanding of how its life cycle and bacterial interactions affect the production and composition of dissolved extracellular organic carbon and its transfer to the particulate pool. We traced the fate of photosynthetically fixed carbon during phosphate-limited stationary growth of non-axenic, calcifying E. huxleyi batch cultures, and more specifically the transfer of this carbon to bacteria and to dissolved high molecular weight neutral aldoses (HMW NAld) and extracellular particulate carbon. We then compared the dynamics of dissolved carbohydrates and transparent exopolymer particles (TEP) between cultures of non-axenic and axenic diploid E. huxleyi. In addition, we present the first data on extracellular organic carbon in (non-axenic) haploid E. huxleyi cultures. Bacteria enhanced the accumulation of dissolved polysaccharides and altered the composition of dissolved HMW NAld, while they also stimulated the formation of TEP containing high densities of charged polysaccharides in diploid E. huxleyi cultures. In haploid E. huxleyi cultures we found a more pronounced accumulation of dissolved carbohydrates, which had a different NAld composition than the diploid cultures. TEP formation was significantly lower than in the diploid cultures, despite the presence of bacteria. In diploid E. huxleyi cultures, we measured a high level of extracellular release of organic carbon (34-76%), retrieved mainly in the particulate pool instead of the dissolved pool. Enhanced formation of sticky TEP due to bacteria-alga interactions, in concert with the production of coccoliths, suggests that especially diploid E. huxleyi blooms increase the efficiency of export production in the ocean during dissolved phosphate-limited conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2012.02873.xDOI Listing

Publication Analysis

Top Keywords

diploid huxleyi
16
huxleyi cultures
16
dissolved carbohydrates
12
organic carbon
12
huxleyi
9
emiliania huxleyi
8
transparent exopolymer
8
exopolymer particles
8
life cycle
8
cycle bacterial
8

Similar Publications

Life cycle and morphogenetic differentiation in heteromorphic cell types of a cosmopolitan marine microalga.

New Phytol

December 2024

Department of Ecology, Evolution and Behaviour, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.

Gephyrocapsa huxleyi is a prevalent, bloom-forming phytoplankton species in the oceans. It exhibits a complex haplodiplontic life cycle, featuring a diploid-calcified phase, a haploid phase and a third 'decoupled' phase produced during viral infection. Decoupled cells display a haploid-like phenotype, but are diploid.

View Article and Find Full Text PDF

Coccolithophores play a significant role in marine calcium carbonate production and carbon cycles, attributing to their unique feature of producing calcareous plates, coccoliths. Coccolithophores also possess a haplo-diplontic life cycle, presenting distinct morphology types and calcification states. However, differences in nutrient acquisition strategies and mixotrophic behaviors of the two life phases remain unclear.

View Article and Find Full Text PDF

Different photosynthetic responses of haploid and diploid Emiliania huxleyi (Prymnesiophyceae) to high light and ultraviolet radiation.

Bioresour Bioprocess

July 2023

CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, Guangdong, China.

Solar radiation varies quantitatively and qualitatively while penetrating through the seawater column and thus is one of the most important environmental factors shaping the vertical distribution pattern of phytoplankton. The haploid and diploid life-cycle phases of coccolithophores might have different vertical distribution preferences. Therefore, the two phases respond differently to high solar photosynthetically active radiation (PAR, 400-700 nm) and ultraviolet radiation (UVR, 280-400 nm).

View Article and Find Full Text PDF

Mixotrophic algae that combine photoautotrophy with phagotrophy in a single cell are prevalent in marine ecosystems. Here, we assessed the ability of food ingestion in coccolithophores, an important group of calcifying haptophytes inhabiting the oceans. We tested four species from different coccolithophore lineages (Emiliania huxleyi, Calcidiscus leptoporus, Coccolithus braarudii, and Calyptrosphaera sphaeroidea).

View Article and Find Full Text PDF

Transcriptional response of Emiliania huxleyi under changing nutrient environments in the North Pacific Subtropical Gyre.

Environ Microbiol

May 2020

Biology and Paleo Environment Division, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964, USA.

The widespread coccolithophore Emiliania huxleyi is an abundant oceanic phytoplankton, impacting the global cycling of carbon through both photosynthesis and calcification. Here, we examined the transcriptional responses of populations of E. huxleyi in the North Pacific Subtropical Gyre to shifts in the nutrient environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!