Understanding of soil processes is essential for addressing the global issues of food security, disease transmission and climate change. However, techniques for observing soil biology are lacking. We present a heterogeneous, porous, transparent substrate for in situ 3D imaging of living plants and root-associated microorganisms using particles of the transparent polymer, Nafion, and a solution with matching optical properties. Minerals and fluorescent dyes were adsorbed onto the Nafion particles for nutrient supply and imaging of pore size and geometry. Plant growth in transparent soil was similar to that in soil. We imaged colonization of lettuce roots by the human bacterial pathogen Escherichia coli O157:H7 showing micro-colony development. Micro-colonies may contribute to bacterial survival in soil. Transparent soil has applications in root biology, crop genetics and soil microbiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439476 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044276 | PLOS |
Sci Rep
January 2025
Department of Electrical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran.
Climate change is one of the most crucial issues in human society such that if it is not given sufficient attention, it can become a great threat to both humans and the Earth. Due to global warming, soil erosion is increasing in different regions. Therefore, this issue will require further investigation and the use of new tools.
View Article and Find Full Text PDFSci Rep
December 2024
The National Institute of Horticultural Research, ul. Pomologiczna 18, 96-100, Skierniewice, Poland.
The aim of this research is to create an automated system for identifying soil microorganisms at the genera level based on raw microscopic images of monocultural colonies grown in laboratory environment. The examined genera are: Fusarium, Trichoderma, Verticillium, Purpureolicillium and Phytophthora. The proposed pipeline deals with unprocessed microscopic images, avoiding additional sample marking or coloration.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Department of Life Sciences, Changzhi University, Changzhi 046011, China.
The potential threat of soil microplastics (MPs, particle sizes smaller than 5 mm) to the agricultural environment and food security production has become a hot issue, but there are few systematic studies on the characteristics and influencing factors of MP pollution in agricultural soil in China. Based on the data of soil MPs and related environmental factors (temperature, precipitation, soil pH, and organic carbon) and social and economic factors (permanent population, gross regional product per capita, gross industrial product per capita, and cultivated land area per capita) extracted from 6 694 samples from 85 published studies from 2020 to 2023, meta-analysis was performed. The characteristics of MPs pollution in agricultural soil and the key factors affecting the accumulation of MPs in soil in six administrative regions of China were analyzed.
View Article and Find Full Text PDFBeilstein J Nanotechnol
December 2024
Kiel University, Department of Functional Morphology and Biomechanics, Am Botanischen Garten 9, D-24098 Kiel, Germany.
The increasing interests in natural, biodegradable, non-toxic materials that can find application in diverse industry branches, for example, food, pharmacy, medicine, or materials engineering, has steered the attention of many scientists to plants, which are a known source of natural hydrogels. Natural hydrogels share some features with synthetic hydrogels, but are more easy to obtain and recycle. One of the main sources of such hydrogels are mucilaginous seeds and fruits, which produce after hydration a gel-like, transparent capsule, the so-called mucilage envelope.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Earth Sciences, Dartmouth College, New Hampshire, USA.
Marine microorganisms play a critical role in regulating atmospheric CO concentration via the biological carbon pump. Deposition of continental mineral dust on the sea surface increases carbon sequestration but the interaction between minerals and marine microorganisms is not well understood. We discovered that the interaction of clay minerals with dissolved organic matter and a γ-proteobacterium in seawater increases Transparent Exopolymer Particle (TEP) concentration, leading to organoclay floc formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!