Two RNAs (4.5SH and 4.5SI) with unknown functions share a number of features: short length (about 100 nt), transcription by RNA polymerase III, predominately nuclear localization, the presence in various tissues, and relatively narrow taxonomic distribution (4 and 3 rodent families, respectively). It was reported that 4.5SH RNA turns over rapidly, whereas 4.5SI RNA is stable in the cell, but their lifetimes remained unknown. We showed that 4.5SH is indeed short-lived (t(1/2)~18 min) and 4.5SI is long-lived (t(1/2)~22 h) in Krebs ascites carcinoma cells. The RNA structures specifying rapid or slow decay of different small cellular RNAs remain unstudied. We searched for RNA structural features that determine the short lifetime of 4.5SH in comparison with the long lifetime of 4.5SI RNA. The sequences of genes of 4.5SH and 4.5SI RNAs were altered and human cells (HeLa) were transfected with these genes. The decay rate of the original and altered RNAs was measured. The complementarity of 16-nt end regions of 4.5SI RNA proved to contribute to its stability in cells, whereas the lack of such complementarity in 4.5SH RNA caused its rapid decay. Possible mechanisms of the phenomenon are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3440375PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044157PLOS

Publication Analysis

Top Keywords

45si rna
12
45sh 45si
8
rna
8
45sh rna
8
45sh
6
45si
6
rnas
5
complementarity regions
4
regions increases
4
increases lifetime
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!