Background: Paracetamol is a cornerstone for perioperative pain relief. Its mechanism of action may include a local anti-inflammatory effect with inhibition of cyclooxygenase isoenzymes. The scarce literature available on its effects on wound healing consists of preclinical studies into the effect of paracetamol on healing of the musculoskeletal system. Although the drug is used abundantly for pain relief after surgery of the gastrointestinal tract, there are no published data on the influence of paracetamol on anastomotic and abdominal healing. This also holds for the crucial, early inflammatory phase of repair. The recovery of wound strength could therefore conceivably be affected by paracetamol.

Methods: In 78 male Wistar rats, we constructed an anastomosis in colon and ileum. The rats received either low- or high-dose (50 or 200 mg/kg/d, divided over 2 doses) paracetamol or vehicle (controls) until they were killed on day 3 or 7 after surgery (n = 13 each). In anastomoses, the main outcome variables were 2 independent measures for wound strength, bursting pressure, and breaking strength, the latter being the primary outcome variable. In addition, collagen levels were measured and histology was performed. In fascia, breaking strength was analyzed.

Results: No significant differences were found between control and paracetamol-treated groups at any time point for any of the variables. Wound strength increased significantly from day 3 to day 7 in all groups. In the colon anastomosis, the breaking strength increased from 130 ± 9 g (mean ± SEM) at day 3 to 232 ± 17 g at day 7 in the control group, from 144 ± 10 to 224 ± 9 g in the low-dose group, and from 130 ± 12 to 263 ± 28 g in the high-dose group. The lower limit for the 95% confidence interval was -11 for the difference between control and low-dose groups at day 3 and -25 for the difference between control and high-dose groups. No differences in collagen levels were found between the high-dose and control groups. Histology did not indicate the presence of gross differences between groups.

Conclusions: Perioperative use of paracetamol in a rat model of intestinal surgery does not significantly impede wound repair in the early postoperative period.

Download full-text PDF

Source
http://dx.doi.org/10.1213/ANE.0b013e31826a4253DOI Listing

Publication Analysis

Top Keywords

wound strength
12
breaking strength
12
wound repair
8
pain relief
8
collagen levels
8
strength increased
8
difference control
8
paracetamol
6
wound
6
strength
6

Similar Publications

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

Nat Commun

December 2024

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.

View Article and Find Full Text PDF

laparoscopy has emerged as a pivotal tool for the management of acute abdominal pathologies. It provides diagnostic and therapeutic advantages, enabling surgeons to evaluate and address diverse acute abdominal conditions using minimally invasive techniques. The aim of this consensus was to obtain evidence-based guidance for surgeons regarding the utilization of laparoscopy in emergency medical settings, and has been divided into trauma and non-trauma emergencies.

View Article and Find Full Text PDF

Background: Cancellous bone mechanical properties are directly linked to structural integrity, which is a result of bone quantity, the quality of its bone matrix, and its microarchitecture. Several studies highlighted the bone behavior under specific loads, contributing to understanding risk factors and developing more effective therapeutic strategies. The anatomy and stability of iliac bone fractures, providing insight into pelvic trauma management.

View Article and Find Full Text PDF

Objective: To provide clinicians with reliable recommendations for the selection of appropriate suturing techniques for surgical management of common musculoskeletal soft tissue injuries.

Methods: A systematic search of PubMed, Springer, Web Science, Vip Database, China National Knowledge, and Wanfang Data for in vitro biomechanical studies on suture techniques in the surgical treatment of musculoskeletal soft tissue injuries covering relevant studies from April 2009 to April 2024 was performed. A generalized classification was made based on the characteristics of the techniques, and recommendations for the selection of suture techniques were made according to the GRADE concept.

View Article and Find Full Text PDF

Purposes: The objective of this study was to investigate intra-articular distal radius fractures, aiming to provide a comprehensive analysis of fracture patterns and discuss the corresponding treatment strategies for each pattern.

Methods: 294 cases of intra-articular distal radius fractures lines were collected and clustered thorough K-means and hierarchical clustering algorithm. The demographic data of patients and the clinical treatment outcomes were recorded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!