Benzophenone is a phototoxic compound with absorption maxima in the ultraviolet A (UVA) and ultraviolet B (UVB) range. Many benzophenone derivatives are known to be photosensitizing. On the other hand, 2-hydroxy-4-methoxybenzophenone is used as a photoprotective agent. The aim of the present study was to analyse a range of benzophenone derivatives and thus examine the effects of molecular changes in the benzophenone molecule on phototoxic behaviour. Phototoxicity was tested by an in vitro photohaemolysis test. The tested compounds were benzophenone itself and the derivatives 2-hydroxybenzophenone, 2-aminobenzophenone, 2-benzoylbenzoic acid, 3-hydroxybenzophenone, and 4-hydroxybenzo-phenone, as well as the structurally similar compounds 9-fluorenone, 9-fluorenone-2-carboxylic acid, cyclohexyl phenyl ketone, and 1,4-naphtho-quinone. It was shown that minor changes in molecular structure can result in highly different phototoxic characteristics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2340/00015555-1421 | DOI Listing |
Sci Rep
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
The solubility of commonly used anti-inflammatory drugs has become a significant concern in contemporary medicine. Furthermore, inflammatory arthritis stands out as the most prevalent chronic inflammatory disease globally. The disease's pathology is characterized by heightened inflammation and oxidative stress, culminating in chronic pain and the loss of joint functionality.
View Article and Find Full Text PDFChemSusChem
January 2025
Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering, P.zza Leonardo da Vinci, 32, 20133, Milano, ITALY.
The conversion of bio-based molecules into valuable chemicals is essential for advancing sustainable processes and addressing global resource challenges. However, conventional catalytic methods often demand harsh conditions and struggle with low product selectivity. This study introduces a series of bifunctional PdxPty catalysts supported on TiO2, designed for achieving selective and mild-temperature catalysis in biomass conversion.
View Article and Find Full Text PDFBeilstein J Org Chem
December 2024
Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554, bivio per Sestu, 09042 Monserrato (CA), Italy.
The rising popularity of bioconjugate therapeutics has led to growing interest in late-stage functionalization (LSF) of peptide scaffolds. α,β-Unsaturated amino acids like dehydroalanine (Dha) derivatives have emerged as particularly useful structures, as the electron-deficient olefin moiety can engage in late-stage functionalization reactions, like a Giese-type reaction. Cheap and widely available building blocks like organohalides can be converted into alkyl radicals by means of photoinduced silane-mediated halogen-atom transfer (XAT) to offer a mild and straightforward methodology of alkylation.
View Article and Find Full Text PDFFitoterapia
January 2025
Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan. Electronic address:
Previously undescribed benzophenone rhamnosides, triadenosides A-F (1-6), were isolated from the aerial parts of Triadenum japonicum (Blume) Makino (Hypericaceae), where known compounds including benzophenone rhamnosides (7 and 8), benzophenone C-glucoside (9), flavonols and their glycosides (10-17), and biflavone (18) were also isolated and identified. Detailed spectroscopic analysis revealed that triadenoside A (1) was 2,3',5'-trihydroxy-4,6-dimethoxybenzophenone 2-O-α-L-rhamnopyranoside, while the absolute configuration of the rhamnosyl moiety was confirmed by HPLC analysis. Triadenosides B-E (2-5) were assigned as acetyl derivatives of 1 in their rhamnosyl moieties.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Photochemical deracemization has emerged as one of the most straightforward approaches to access highly enantioenriched compounds in recent years. While excited-state events such as energy transfer, single electron transfer, and ligand-to-metal charge transfer have been leveraged to promote stereoablation, approaches relying on hydrogen atom transfer, which circumvent the limitations imposed by the triplet energy and redox potential of racemic substrates, remain underexplored. Conceptually, the most attractive method for tertiary stereocenter deracemization might be hydrogen atom abstraction followed by hydrogen atom donation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!