In the past decade, the identification of most genes involved in Congenital Disorders of Glycosylation (CDG) (type I) was achieved by a combination of biochemical, cell biological and glycobiological investigations. This has been truly successful for CDG-I, because the candidate genes could be selected on the basis of the homology of the synthetic pathway of the dolichol linked oligosaccharide in human and yeast. On the contrary, only a few CDG-II defects were elucidated, be it that some of the discoveries represent wonderful breakthroughs, like e.g, the identification of the COG defects. In general, many rare genetic defects have been identified by positional cloning. However, only a few types of CDG have effectively been elucidated by linkage analysis and so-called reverse genetics. The reason is that the families were relatively small and could-except for CDG-PMM2-not be pooled for analysis. Hence, a large number of CDG cases has long remained unsolved because the search for the culprit gene was very laborious, due to the heterogeneous phenotype and the myriad of candidate defects. This has changed when homozygosity mapping came of age, because it could be applied to small (consanguineous) families. Many novel CDG genes have been discovered in this way. But the best has yet to come: what we are currently witnessing, is an explosion of novel CDG defects, thanks to exome sequencing: seven novel types were published over a period of only two years. It is expected that exome sequencing will soon become a diagnostic tool, that will continuously uncover new facets of this fascinating group of diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10719-012-9445-7 | DOI Listing |
Clin Genitourin Cancer
December 2024
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Electronic address:
Objective: The aim of our study was to characterize the spectrum of mutations in muscle-invasive bladder cancer (MIBC) in the Chinese population, identifying mutational features and exploring potential therapeutic targets.
Methods: We collected samples from 62 Chinese patients with MIBC. For each patient, tumor tissues or blood samples were collected and sequenced by whole exome sequencing.
Hum Mol Genet
January 2025
Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China.
Hirschsprung's disease (HSCR) is a congenital enteric neuropathic disorder characterized by high heritability (>80%) and polygenic inheritance (>20 genes). The previous genome-wide association studies (GWAS) identified several common variants associated with HSCR and demonstrated increased predictive performance for HSCR risk in Europeans using a genetic risk score, there remains a notable gap in knowledge regarding Chinese populations. We conducted whole exome sequencing in a HSCR case cohort in Chinese.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
Glioblastoma is the deadliest primary brain tumor, largely due to inevitable recurrence of the disease after treatment. While most recurrences are local, patients rarely present with a new discontiguous focus of glioblastoma. Little is currently known about the genetic profile of discontiguous recurrences.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Jianshe Rd, Erqi District, Zhengzhou, 450052, Henan, China.
Objective: Spinal muscular atrophy (SMA) is a motor neuron disorder encompassing 5q and non-5q forms, causing muscle weakness and atrophy due to spinal cord cell degeneration. Understanding its genetic basis is crucial for genetic counseling and personalized treatment options.
Methods: This study retrospectively analyzed families of patients suspected of SMA at our institution from February 2006 to March 2024.
Genome Med
January 2025
Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.
Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.
Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!