Maize (Zea mays ssp. mays L.) is an important model organism for fundamental research in the agro-biotechnology field. Aldehydes were generated in response to a suite of environmental stresses that perturb metabolism including salinity, dehydration, desiccation, and cold and heat shock. Many biologically important aldehydes are metabolized by the superfamily of NAD(P)(+)-dependent aldehyde dehydrogenases. Here, starting from the database of Z. mays, we identified 28 aldehyde dehydrogenase (ALDH) genes and 48 transcripts by the in silico cloning method using the ALDH-conserved domain amino acid sequence of Arabidopsis and rice as a probe. Phylogenetic analysis shows that all 28 members of the ALDH gene families were classified to ten distinct subfamilies. Microarray data and quantitative real-time PCR analysis reveal that ZmALDH9, ZmALDH13, and ZmALDH17 genes involve the function of drought stress, acid tolerance, and pathogens infection. These results suggested that these three ZmALDH genes might be potentially useful in maize genetic improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10142-012-0290-3DOI Listing

Publication Analysis

Top Keywords

aldehyde dehydrogenase
8
dehydrogenase protein
4
protein superfamily
4
superfamily maize
4
maize maize
4
maize zea
4
zea mays
4
mays ssp
4
ssp mays
4
mays model
4

Similar Publications

Uncovering the Role of in Prostate Cancer: Insights from Genetic and Expression Analyses.

J Cancer

January 2025

Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.

Biochemical recurrence (BCR) is a critical concern in prostate cancer management; however, its underlying genetic determinants remain poorly understood. The () gene family is involved in cellular detoxification and biosynthetic processes and has been implicated in various cancers. This study investigated the association between the family members and prostate cancer recurrence.

View Article and Find Full Text PDF

Transcriptomic analysis of the inhibition mechanisms against by antibacterial aptamer B4.

Front Vet Sci

December 2024

State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen, China.

is a common bacterial pathogen in aquaculture, often leading to visceral white spot disease in large yellow croakers (). Previous studies have found that certain aptamers show an efficient antibacterial effect against this pathogen. In this study, we analyzed the transcriptome of to get insights into the antibacterial and inhibitions mechanisms following exposure to the aptamer B4.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) account for 0.01 to 2% of the total tumor mass; however, they play a key role in tumor progression, metastasis and resistance to current cancer therapies. The generation and maintenance of CSCs are usually linked to the epithelial-mesenchymal transition (EMT), a dynamic process involved in reprogramming cancer cells towards a more aggressive and motile phenotype with increased stemness potential.

View Article and Find Full Text PDF

The majority of naturally occurring mutations of the human gene , are associated with reduced or completely absent xanthine oxidoreductase (XOR) activity, leading to a disease known as classical xanthinuria, which is due to the accumulation and excretion of xanthine in urine. Three types of classical xanthinuria have been identified: type I, characterised by XOR deficiency, type II, caused by XOR and aldehyde oxidase (AO) deficiency, and type III due to XOR, AO, and sulphite oxidase (SO) deficiency. Type I and II are considered rare autosomal recessive disorders, a condition where two copies of the mutated gene must be present to develop the disease or trait.

View Article and Find Full Text PDF

Protein stabilization in spray drying and solid-state storage by using a 'molecular lock' - exploiting bacterial adaptations for industrial applications.

RSC Chem Biol

December 2024

SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick Limerick Ireland

Small, stable biomedicines, like peptides and hormones, are already available on the market as spray dried formulations, however large biomolecules like antibodies and therapeutic enzymes continue to pose stability issues during the process. Stresses during solid-state formation are a barrier to formulation of large biotherapeutics as dry powders. Here, we explore an alternative avenue to protein stabilisation during the spray drying process, moving away from the use of excipients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!