Targeting lentiviral vectors for cancer immunotherapy.

Curr Cancer Ther Rev

Division of Infection and Immunity, Medical School of the Royal Free and University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom.

Published: November 2011

Delivery of tumour-associated antigens (TAA) in a way that induces effective, specific immunity is a challenge in anti-cancer vaccine design. Circumventing tumour-induced tolerogenic mechanisms in vivo is also critical for effective immunotherapy. Effective immune responses are induced by professional antigen presenting cells, in particular dendritic cells (DC). This requires presentation of the antigen to both CD4(+) and CD8(+) T cells in the context of strong co-stimulatory signals. Lentiviral vectors have been tested as vehicles, for both ex vivo and in vivo delivery of TAA and/or activation signals to DC, and have been demonstrated to induce potent T cell mediated immune responses that can control tumour growth. This review will focus on the use of lentiviral vectors for in vivo gene delivery to DC, introducing strategies to target DC, either targeting cell entry or gene expression to improve safety of the lentiviral vaccine or targeting dendritic cell activation pathways to enhance performance of the lentiviral vaccine. In conclusion, this review highlights the potential of lentiviral vectors as a generally applicable 'off-the-shelf' anti-cancer immunotherapeutic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442241PMC
http://dx.doi.org/10.2174/157339411797642605DOI Listing

Publication Analysis

Top Keywords

lentiviral vectors
16
immune responses
8
lentiviral vaccine
8
lentiviral
5
targeting lentiviral
4
vectors
4
vectors cancer
4
cancer immunotherapy
4
immunotherapy delivery
4
delivery tumour-associated
4

Similar Publications

Improving the production of BaEV lentivirus by comprehensive optimization.

J Virol Methods

December 2024

Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, P R China. Electronic address:

With the rapid development of the cell and gene therapy industry, there is an increasing demand for lentiviral vectors that can efficiently infect cells of different purposes. BaEV lentiviruses have been shown to efficiently infect hematopoietic stem cells, primary B cells, and NK cells, which traditional VSV-G lentiviruses cannot infect. However, there is a problem of low virus yield in the production of BaEV lentivirus.

View Article and Find Full Text PDF

Balancing efficacy and safety in lentiviral vector-mediated hematopoietic stem cell gene therapy.

Mol Ther

December 2024

San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita - Salute San Raffaele University Medical School, Milan, Italy; Pediatric Immunohematology and BMT, San Raffaele Hospital, Milan, Italy.

View Article and Find Full Text PDF

Gene therapy for sickle cell disease: recent advances, clinical trials and future directions.

Cytotherapy

December 2024

Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.

Sickle cell disease (SCD) is the most common inherited blood disorder worldwide, impacting millions and imposing severe healthcare challenges, particularly in resource-limited regions. Current treatments have variable efficacy and require lifelong adherence. Allogeneic Hematopoietic Stem Cell Transplantation can be curative but comes with significant side effects and limited donor availability limits its widespread applicability.

View Article and Find Full Text PDF

High intake of dietary linoleic acid may increase the incidence of many diseases. The aim of this research is to examine the impact of linoleic acid on the damage caused by calcium oxalate kidney stones on renal tubular epithelial cells. Calcium oxalate monohydrate (COM) crystals were prepared and used to treat HK-2 cells, which were further treated with different concentrations of linoleic acid in vitro.

View Article and Find Full Text PDF

Purpose: This study aimed to investigate that AKT1-Mediated NOTCH1 phosphorylation promotes gastric cancer (GC) progression via targeted regulation of IRS-1 transcription.

Methods: The study utilized databases such as PhosphositePlus, TRANSFAC, CHEA, GPS 5.0, and TCGA, along with experimental techniques including Western Blot, co-IP, in vitro kinase assay, construction of lentiviral overexpression and silencing vectors, immunoprecipitation, modified proteomics, immunofluorescence, ChIP-PCR, EdU assay, Transwell assay, and scratch assay to investigate the effects of AKT1-induced Notch1 phosphorylation on cell proliferation, invasion and migration in vitro, as well as growth and epithelial-mesenchymal transition (EMT) in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!