Potato is one of the most important staple food in the world because it is a good source of vitamin C, vitamin B6 but also an interesting source of minerals including mainly potassium, but also magnesium, phosphorus, manganese, zinc and iron to a lesser extent. The lack of iron constitutes the main form of micronutrient deficiency in the world, namely iron deficiency anemia, which strongly affects pregnant women and children from developing countries. Iron biofortification of major staple food such as potato is thus a crucial issue for populations from these countries. To better understand mechanisms leading to iron accumulation in potato, we followed in an in vitro culture experiment, by qPCR, in the cultivar Désirée, the influence of media iron content on the expression of genes related to iron uptake, transport and homeostasis. As expected, plantlets grown in a low iron medium (1 mg L(-1) FeNaEDTA) displayed a decreased iron content, a strong induction of iron deficiency-related genes and a decreased expression of ferritins. Inversely, plantlets grown in a high iron medium (120 mg L(-1) FeNaEDTA) strongly accumulated iron in roots; however, no significant change in the expression of our set of genes was observed compared to control (40 mg L(-1) FeNaEDTA).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2012.08.003DOI Listing

Publication Analysis

Top Keywords

iron
14
iron uptake
8
iron deficiency
8
staple food
8
iron content
8
plantlets grown
8
iron medium
8
uptake homeostasis
4
genes
4
homeostasis genes
4

Similar Publications

Hydrogeochemical characterization of shallow and deep groundwater for drinking and irrigation water quality index of Kathmandu Valley, Nepal.

Environ Geochem Health

January 2025

Environment Research Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.

A comprehensive hydrogeochemical analysis of 156 groundwater samples (106 shallow and 50 deep) was conducted in the Kathmandu Valley, Nepal. This study addresses a significant research gap by focusing on the hydro-geochemical composition and contamination of groundwater in the Kathmandu Valley, an area with limited detailed assessments. The novelty of this work lies in its comprehensive analysis of both shallow and deep groundwater, particularly concerning the high concentration of contaminants like arsenic, microbial pathogens, and ammonium, which are critical for public health.

View Article and Find Full Text PDF

Engineering Saccharomyces cerevisiae for growth on xylose using an oxidative pathway.

Appl Microbiol Biotechnol

January 2025

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.

The fermentative production of valuable chemicals from lignocellulosic feedstocks has attracted considerable attention. Although Saccharomyces cerevisiae is a promising microbial host, it lacks the ability to efficiently metabolize xylose, a major component of lignocellulosic feedstocks. The xylose oxidative pathway offers advantages such as simplified metabolic regulation and fewer enzymatic steps.

View Article and Find Full Text PDF

Nanosensor for Fe(II) and Fe(III) Allowing Spatiotemporal Sensing .

Nano Lett

January 2025

Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance of Research and Technology, 1 CREATE Way, #03-06, Singapore 138602, Singapore.

Fluorescent nanosensors operating have shown recent success toward informing basic plant biology and agricultural applications. We developed near-infrared (NIR) fluorescent nanosensors using the Corona Phase Molecular Recognition (CoPhMoRe) technique that distinguish Fe(II) and Fe(III) species with limit of detection as low as 10 nM. An anionic poly(p-phenyleneethynylene) (PPE) polyelectrolyte wrapped single-walled carbon nanotube (SWNT) shows up to 200% turn-on and 85% turn-off responses to Fe(II) and Fe(III), respectively, allowing spatial and temporal analysis of iron uptake in both foliar and root-to-shoot pathways.

View Article and Find Full Text PDF

This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom . Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of mycelia by 12.

View Article and Find Full Text PDF

Unlabelled: is an opportunistic pathogen capable of causing severe infections in immunocompromised individuals, who often require prolonged antibiotic therapy. The emergence of carbapenemase-producing has further complicated the management of nosocomial infections, limiting therapeutic options. Cefiderocol has recently emerged as a promising antipseudomonal agent, using the bacterial iron transport system to gain entry into the cell; however, there have been reports of resistant to cefiderocol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!