Rationale: Ischemic heart disease is characterized by contractile dysfunction and increased cardiomyocyte death, induced by necrosis and apoptosis. Increased cell survival after an ischemic insult is critical and depends on several cellular pathways, which have not been fully elucidated.
Objective: To test the hypothesis that the anti-apoptotic hematopoietic lineage substrate-1-associated protein X-1 (HAX-1), recently identified as regulator of cardiac Ca cycling, also may ameliorate cellular injury with an ischemic insult.
Methods And Results: We report that cardiac ischemia/reperfusion injury is associated with significant decreases in HAX-1 levels ex vivo and in vivo. Accordingly, overexpression of HAX-1 improved contractile recovery, coupled with reduced infarct size, plasma troponin I level, and apoptosis. The beneficial effects were associated with decreased endoplasmic reticulum (ER) stress response through specific inhibition of the inositol-requiring enzyme (IRE-1) signaling pathway, including its downstream effectors caspase-12 and the transcription factor C/EBP homologous protein. Conversely, HAX-1 heterozygous-deficient hearts exhibited increases in infarct size and IRE-1 activity. The inhibitory effects of HAX-1 were mediated by its binding to the N-terminal fragment of the heat shock protein 90 (Hsp90). Moreover, HAX-1 sequestered Hsp90 from IRE-1 to the phospholamban-sarcoplasmic/endoplasmic reticulum calcium ATPase complex. The HAX-1 regulation was further supported by loss of IRE-1 inhibition in presence of the Hsp90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin.
Conclusions: Cardiac ischemia-reperfusion injury is associated with decreases in HAX-1 levels. Consequently, overexpression of HAX-1 promotes cardiomyocyte survival, mediated by its interaction with Hsp90 and specific inhibition of IRE-1 signaling at the ER/sarcoplasmic reticulum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537902 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.112.279935 | DOI Listing |
J Clin Immunol
November 2024
Faculty of Medicine, Ihsan Dogramaci Childrens Hospital, Hacettepe University, Ankara, Turkey.
Cell Death Discov
May 2024
Department of Neuro-interventional Radiology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, 450052, Zhengzhou, China.
Acute cerebral ischemia has a high rate of disability and death. Although timely recanalization therapy may rescue the ischemic brain tissue, cerebral ischemia-reperfusion injury has been shown to limit the therapeutic effects of vascular recanalization. Protein HAX-1 has been reported as a pro-survival protein that plays an important role in various disorders, particularly in association with the nervous system.
View Article and Find Full Text PDFJ Cell Mol Med
February 2024
Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Background And Aims: The secretion of bile salts transported by the bile salt export pump (BSEP) is the primary driving force for the generation of bile flow; thus, it is closely related to the formation of cholesterol stones. Caveolin-1 (Cav-1), an essential player in cell signalling and endocytosis, is known to co-localize with cholesterol-rich membrane domains. This study illustrates the role of Cav-1 and BSEP in cholesterol stone formation.
View Article and Find Full Text PDFFEBS J
November 2023
Department of Molecular Immunology, Ruhr University Bochum, Germany.
NOD1 is a cytosolic immune receptor well known for recognizing intracellular bacteria and inducing innate immune responses. Upon ligand binding, it usually forms a complex with the serine/threonine kinase RIPK2 to activate the transcription factor NF-κB. Next to its role in pathogen recognition, NOD1 has been associated with cancer progression.
View Article and Find Full Text PDFFEBS J
November 2023
Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
The human Nod-like receptor protein NOD1 is a well-described pattern-recognition receptor (PRR) with diverse functions. NOD1 associates with F-actin and its protein levels are upregulated in metastatic cancer cells. A hallmark of cancer cells is their ability to migrate, which involves actin remodelling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!