We have previously reported that E pluripoietins are produced in mice after a single 20-mg injection of cytosine arabinoside (Ara-C) and that they are able to initiate the determination of hemopoietic pluripotent stem cells (CFU-S) toward the erythrocytic lineage. However, the mechanism of E pluripoietin release is still unclear. Since the stimulating effect of thyroid hormone on erythropoiesis is well known, we postulated a link between this hormone and the E pluripoietins. In previous papers we demonstrated that L-triiodothyronine (LT3) exhibits the capacity of inducing CFU-S differentiation toward erythropoiesis in vitro. Two series of data presented here suggest that LT3 acts indirectly on CFU-S determination by promoting the release of E pluripoietin-like factors. First, the Ara-C injection which induces the production of E pluripoietins in mice also promotes an increase in the LT3 plasma level. Second, medium conditioned with bone marrow cells exposed in vitro for 90 min to LT3 (even though this medium does not contain LT3) has E pluripoietin-like effects, inducing CFU-S differentiation toward the erythrocytic lineage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0014-4827(90)90133-u | DOI Listing |
Mucosal Immunol
October 2024
Mary H Weiser Food Allergy Center, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA. Electronic address:
Stem Cells Transl Med
August 2023
Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.
Neurodegenerative diseases (ND) are an entire spectrum of clinical conditions that affect the central and peripheral nervous system. There is no cure currently, with treatment focusing mainly on slowing down progression or symptomatic relief. Cellular therapies with various cell types from different sources are being conducted as clinical trials for several ND diseases.
View Article and Find Full Text PDFEur J Cell Biol
August 2022
Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi" (INBB), Viale delle Medaglie d'Oro 305, 00136, Roma (RM); Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy. Electronic address:
Human hematopoietic stem/progenitor cells (HSPCs) are pluripotent cells that gradually lose their self-renewal and regenerative potential, to give rise to mature cells of the hematopoietic system by differentiation. HSPC infusion is used to restore hematopoietic function in patients with a variety of onco-hematologic and immune-mediated disorders. The functionality of these cells is therefore of great importance to ensure the homeostasis of the hematopoietic system.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
August 2022
Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Nsukka, Nigeria.
Sickle cell disease (SCD) is one of the most common haemoglobinopathies worldwide, with up to 70 % of global SCD annual births occurring in sub-Saharan Africa. Reports have shown that 50 to 80 % of affected children in these countries die annually. Efforts geared towards understanding and controlling HbF production in SCD patients could lead to strategies for effective control of globin gene expression and therapeutic approaches that could be beneficial to individuals with haemoglobinopathies.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2022
Centro Nazionale Sangue, Rome, Italy.
Most public cord blood banking programs are currently facing financial difficulties due to a progressive decline in the number of cord blood transplants performed worldwide and to a high discard rate of the donated units caused by progressively increasing thresholds of the stem cell dose required to perform safe and effective hemopoietic cord blood transplants. Recycling a proportion of unused cord blood units to prepare novel cord blood components obtained with minimal manipulation (platelets, plasma, red blood cells) and to develop more technologically complex products regulated in the US as Cellular and Gene Therapy Products and in Europe as Advanced Therapy Medicinal Products [e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!