Efficient maintenance of chromatin structure during passage of RNA polymerase II (Pol II) is critical for cell survival and functioning. Moderate-level transcription of eukaryotic genes by Pol II is accompanied by nucleosome survival, extensive exchange of histones H2A/H2B and minimal exchange of histones H3/H4. Complementary in vitro studies have shown that transcription through chromatin by single Pol II complexes is uniquely coupled with nucleosome survival via formation of a small intranucleosomal DNA loop (Ø-loop) containing the transcribing enzyme. In contrast, transient displacement and exchange of all core histones are observed during intense transcription. Indeed, multiple transcribing Pol II complexes can efficiently overcome the high nucleosomal barrier and displace the entire histone octamer in vitro. Thus, various Pol II complexes can remodel chromatin to different extents. The mechanisms of nucleosome survival and displacement during transcription and the role of DNA-histone interactions and various factors during this process are discussed. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535581PMC
http://dx.doi.org/10.1016/j.bbagrm.2012.08.015DOI Listing

Publication Analysis

Top Keywords

rna polymerase
12
nucleosome survival
12
pol complexes
12
exchange histones
8
pol
5
mechanism transcription
4
nucleosome
4
transcription nucleosome
4
nucleosome rna
4
polymerase efficient
4

Similar Publications

Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes.

View Article and Find Full Text PDF

Variation of gene ratios in mock communities constructed with purified 16S rRNA during processing.

Sci Rep

December 2024

Department of Chemical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Luciano Gualberto, Travessa 3, n. 380., São Paulo, SP, CEP 05508-900, Brazil.

16S ribosomal nucleic acid (16S rRNA) analysis allows to specifically target the metabolically active members of microbial communities. The stability of the ratios between target genes in the workflow, which is essential for the bioprocess-relevance of the data derived from this analysis, was investigated using synthetic mock communities constructed by mixing purified 16S rRNA from Bacillus subtilis (Bs), Staphylococcus aureus (Sa), Pseudomonas aeruginosa (Pa), Klebsiella pneumoniae (Kp) and Burkholderia cepacia (Bc) in different proportions. The RT reaction yielded one copy of cDNA per rRNA molecule for Pa, Bc and Sa but only 2/3 of the expected cDNA from 16S rRNAs of Bs and Kp.

View Article and Find Full Text PDF

Replication Protein A (RPA) plays a pivotal role in DNA replication by coating and protecting exposed single-stranded DNA, and acting as a molecular hub that recruits additional replication factors. We demonstrate that archaeal RPA hosts a winged-helix domain (WH) that interacts with two key actors of the replisome: the DNA primase (PriSL) and the replicative DNA polymerase (PolD). Using an integrative structural biology approach, combining nuclear magnetic resonance, X-ray crystallography and cryo-electron microscopy, we unveil how RPA interacts with PriSL and PolD through two distinct surfaces of the WH domain: an evolutionarily conserved interface and a novel binding site.

View Article and Find Full Text PDF

The genomes of human gut bacteria in the genus Bacteroides include numerous operons for biosynthesis of diverse capsular polysaccharides (CPSs). The first two genes of each CPS operon encode a locus-specific paralog of transcription elongation factor NusG (called UpxY), which enhances transcript elongation, and a UpxZ protein that inhibits noncognate UpxYs. This process, together with promoter inversions, ensures that a single CPS operon is transcribed in most cells.

View Article and Find Full Text PDF

Human ANP32A/B are SUMOylated and utilized by avian influenza virus NS2 protein to overcome species-specific restriction.

Nat Commun

December 2024

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China.

Human ANP32A/B (huANP32A/B) poorly support the polymerase activity of avian influenza viruses (AIVs), thereby limiting interspecies transmission of AIVs from birds to humans. The SUMO-interacting motif (SIM) within NS2 promotes the adaptation of AIV polymerase to huANP32A/B via a yet undisclosed mechanism. Here we show that huANP32A/B are SUMOylated by the E3 SUMO ligase PIAS2α, and deSUMOylated by SENP1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!