Cushing's mechanism maintains cerebral perfusion pressure in experimental subarachnoid haemorrhage.

Neurosci Lett

Discipline of Anatomy and Histology, Centre for Neuroscience, Flinders University, Bedford Park, SA 5042, Australia.

Published: October 2012

Mortality following subarachnoid haemorrhage (SAH) is high, especially within the first 48 h. Poor outcome is predicted by high intracranial pressure which causes diminished cerebral perfusion pressure unless a compensatory increase in mean arterial blood pressure occurs. Therefore blood pressure elevation can be protective following subarachnoid haemorrhage despite the potential for rebleeding. This study investigated blood pressure responses to SAH and the impact on cerebral perfusion pressure and outcome, as demonstrated by two experimental models. Various blood pressure responses were demonstrated, both at the ictus and within the following 5h. Elevated MABP at the ictus and at 2h following experimental SAH was associated with maintenance of CPP in the presence of raised ICP. Poor outcome (arrest of the cerebral circulation) was predicted by failure of MABP to increase significantly above sham levels within 2h of SAH. Rat SAH provides relatively inexpensive models to investigate physiological mechanisms that maintain cerebral perfusion in the presence of intracranial hypertension.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2012.08.057DOI Listing

Publication Analysis

Top Keywords

cerebral perfusion
16
blood pressure
16
perfusion pressure
12
subarachnoid haemorrhage
12
pressure
8
poor outcome
8
pressure responses
8
cerebral
5
sah
5
cushing's mechanism
4

Similar Publications

Permeability is a measure of the degree to which cells can transport molecules across biological barriers. Units of permeability are distance per unit time (typically cm/s), where accurate measurements are needed to define drug delivery in homeostasis and to model dysfunction occurring during disease. This perspective offers a set of community-led guidelines to benchmark permeability data across multidisciplinary approaches and different biological contexts.

View Article and Find Full Text PDF

Purpose: Despite significant improvements in the design and performance of continuous flow left ventricular assist devices (CFLVADs), one of the most important reasons hampering further penetration of this technology is the occurrence of adverse events, especially strokes. One of the well-known risk factors for strokes is hypertension which is particularly common in patients undergoing a CFLVAD implant. While the device is implanted in the heart, strokes happen due to pathology in the brain and we hypothesised that modelling the blood flow in the circle of Willis might shed light on the causation of strokes in this situation.

View Article and Find Full Text PDF

Human brain organoids (HBOs) derived from pluripotent stem cells hold great potential for disease modeling and high-throughput compound screening, given their structural and functional resemblance to fetal brain tissues. These organoids can mimic early stages of brain development, offering a valuable in vitro model to study both normal and disordered neurodevelopment. However, current methods of generating HBOs are often low throughput and variable in organoid differentiation and involve lengthy, labor-intensive processes, limiting their broader application in both academic and industrial research.

View Article and Find Full Text PDF

Longitudinal assessment of retinal and visual pathway electrophysiology and structure after high altitude exposure.

Graefes Arch Clin Exp Ophthalmol

January 2025

Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.

High altitude (HA) exposure induces impairments in visual function. This study was designed to dynamically observe visual function after returning to lowland and elucidate the underlying mechanism by examining the structure and function of retina and visual pathway. Twenty-three subjects were recruited before (Test 1), and one week (Test 2) and three months (Test 3) after their return from HA (4300 m) where they resided for 30 days.

View Article and Find Full Text PDF

Passive heat therapy is gaining popularity as an intervention to promote cardiovascular, physiological, and to a lesser degree, thermoregulatory, adaptations in patients with cardiovascular disease. Despite this, the efficacy of heat therapy to elicit these adaptations remains unknown. We searched 5 databases for original research, screening 2,913 studies and identifying 18 eligible studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!