AI Article Synopsis

Article Abstract

Chemotherapeutic agents- and radiation therapy-induced NF-κB activation in cancer cells contributes to aggressive tumor growth and resistance to chemotherapy and ionizing radiation during cancer treatment. TAK1 has been shown to be required for genotoxic stress-induced NF-κB activation. However, whether TAK1 ubiquitination is involved in genotoxic stress-induced NF-κB activation remains unknown. Herein, we demonstrate that TAK1 ubiquitination plays an important role in the positive and negative regulation of doxorubicin (Dox)-induced NF-κB activation. We found that TAK1 was required for Dox-induced NF-κB activation. At the early stage of Dox treatment, Dox induced Lys63-linked TAK1 polyubiquitination at lysine 158 residue. USP4 inhibited Dox-induced TAK1 Lys63-linked polyubiquitination and knockdown of USP4 enhanced Dox-induced NF-κB activation. At the late stage of Dox treatment, Dox induced Lys48-linked TAK1 polyubiquitination to promote TAK1 degradation. ITCH inhibited Dox-induced NF-κB activation by promoting Lys48-linked TAK1 polyubiquitination and its subsequent degradation. Our study indicates that TAK1 ubiquitination plays critical roles in the regulation of Dox-induced NF-κB activation. Thus, intervention of TAK1 kinase activity or TAK1 Lys63-linked polyubiquitination pathways might greatly enhance the therapeutic efficacy of Dox.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508370PMC
http://dx.doi.org/10.1016/j.cellsig.2012.09.003DOI Listing

Publication Analysis

Top Keywords

nf-κb activation
36
dox-induced nf-κb
20
tak1 ubiquitination
16
tak1
13
tak1 polyubiquitination
12
nf-κb
9
activation
9
tak1 required
8
genotoxic stress-induced
8
stress-induced nf-κb
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!