Trehalose-6-phosphate phosphatase of Brugia malayi (Bm-TPP) represents an attractive vaccine candidate because it is present in all the major life stages of parasite, but is absent in mammals. We have previously cloned, purified and biochemically characterized Bm-TPP. In the present study, we investigated the cross-reactivity of recombinant Bm-TPP (r-Bm-TPP) with the sera of human bancroftian patients belonging to different disease categories. In silico study using bioinformatics tool demonstrated that Bm-TPP is highly immunogenic in nature. BALB/c mice administered with r-Bm-TPP alone or in combination with Freund's complete adjuvant (FCA) generated a strong IgG response. Further investigations on the antibody isotypes showed generation of a mixed T helper cell response which was marginally biased towards Th1 phenotype. r-Bm-TPP with or without adjuvant lead to significantly increased accumulation of CD4+ and CD8+ T cells in the spleen of infected mice and increased the activation of peritoneal macrophages. Additionally, r-Bm-TPP enhanced the production of both proinflammatory (IL-2, IFN-γ) and anti-inflammatory (IL-4, IL-10) cytokines and mice immunized with r-Bm-TPP alone or in combination with FCA showed 54.5% and 67% protection respectively against B. malayi infective larvae challenge. Taken together, our findings suggest that Bm-TPP is protective in nature and might be a potential candidate for development of vaccine against lymphatic filarial infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micinf.2012.08.006 | DOI Listing |
J Adv Res
December 2024
College of Forestry and Grassland Science, Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agriculture University, Changchun 130118, China. Electronic address:
Background: Trehalose is a nonreducing disaccharide containing two glucose molecules linked through an α,α-1,1-glycosidic bond. This unique chemical structure causes trehalose levels to fluctuate significantly in plants under stress, where it functions as an osmoprotectant, enhancing plant resistance to stress. Previous studies have confirmed that the trehalose synthesis pathway is widely conserved across most plants.
View Article and Find Full Text PDFProtein Expr Purif
February 2025
Jiangsu Academy of Agricultural Sciences, Nanjing, 2100114, Jiangsu, China. Electronic address:
This study presents an exhaustive characterization of the enzymatic attributes and structural properties of trehalose-6-phosphate phosphatase (TPP) derived from Fusarium graminearum. Enzyme activity was evaluated through a meticulously designed enzymatic assay. The findings indicate that the molecular weight of the enzyme is approximately 99.
View Article and Find Full Text PDFPhytopathology
November 2024
Beijing Forestry University, College of Forestry, Beijing Forestry University, No.35, Tsinghua Eastern Road, Haidian District, Beijing, Beijing, China, 100083;
Poplar Cytospora canker, caused by , is one of the most destructive and widespread poplar diseases worldwide, especially in northern China. However, our current understanding of its pathogenic mechanisms remains limited. Here, we showed that trehalose biosynthetic genes, such as trehalose-6-phosphate synthase 1 (Tps1), trehalose-6-phosphate phosphatase (Tps2), and the regulatory subunit (Tps3), play important roles in the development and virulence of .
View Article and Find Full Text PDFPlant Cell Environ
January 2025
College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China.
Light is crucial for flower bud development in plants, serving as both signal and energy source. However, the mechanisms by which daylength and light intensity regulate flowering in modern roses remain unclear. In Rosa hybrida 'Carola', insufficient light delays flowering and reduces the sugar content in terminal buds.
View Article and Find Full Text PDFPLoS One
July 2024
Liaocheng Academy of Agricultural Sciences, Liaocheng, Shandong, China.
Trehalose-6-phosphate phosphatase (TPP), a key enzyme for trehalose biosynthesis in plants, plays a pivotal role in the growth and development of higher plants, as well as their adaptations to various abiotic stresses. Employing bioinformatics techniques, 45 TPP genes distributed across 17 chromosomes were identified with conserved Trehalose-PPase domains in the peanut genome, aiming to screen those involved in salt tolerance. Collinearity analysis showed that 22 TPP genes from peanut formed homologous gene pairs with 9 TPP genes from Arabidopsis and 31 TPP genes from soybean, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!