Rationale And Objectives: The aim of this study was to automatically detect and quantify calcium lesions for the whole heart as well as per coronary artery on non-contrast-enhanced cardiac computed tomographic images.

Materials And Methods: Imaging data from 366 patients were randomly selected from patients who underwent computed tomographic calcium scoring assessments between July 2004 and May 2009 at Erasmum MC, Rotterdam. These data included data sets with 1.5-mm and 3.0-mm slice spacing reconstructions and were acquired using four different scanners. The scores of manual observers, who annotated the data using commercially available software, served as ground truth. An automatic method for detecting and quantifying calcifications for each of the four main coronary arteries and the whole heart was trained on 209 data sets and tested on 157 data sets. Statistical testing included determining Pearson's correlation coefficients and Bland-Altman analysis to compare performance between the system and ground truth. Wilcoxon's signed-rank test was used to compare the interobserver variability to the system's performance.

Results: Automatic detection of calcified objects was achieved with sensitivity of 81.2% per calcified object in the 1.5-mm data set and sensitivity of 86.6% per calcified object in the 3.0-mm data set. The system made an average of 2.5 errors per patient in the 1.5-mm data set and 2.2 errors in the 3.0-mm data set. Pearson's correlation coefficients of 0.97 (P < .001) for both 1.5-mm and 3.0-mm scans with respect to the calcium volume score of the whole heart were found. The average R values over Agatston, mass, and volume scores for each of the arteries (left circumflex coronary artery, right coronary artery, and left main and left anterior descending coronary arteries) were 0.93, 0.96, and 0.99, respectively, for the 1.5-mm scans. Similarly, for 3.0-mm scans, R values were 0.94, 0.94, and 0.99, respectively. Risk category assignment was correct in 95% and 89% of the data sets in the 1.5-mm and 3-mm scans.

Conclusions: An automatic vessel-specific coronary artery calcium scoring system was developed, and its feasibility for calcium scoring in individual vessels and risk category classification has been demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2012.07.018DOI Listing

Publication Analysis

Top Keywords

coronary artery
20
calcium scoring
16
data sets
16
data set
16
data
11
artery calcium
8
computed tomographic
8
sets 15-mm
8
15-mm 30-mm
8
ground truth
8

Similar Publications

Coronary artery stenosis detection remains a challenging task due to the complex vascular structure, poor quality of imaging pictures, poor vessel contouring caused by breathing artifacts and stenotic lesions that often appear in a small region of the image. In order to improve the accuracy and efficiency of detection, a new deep-learning technique based on a coronary artery stenosis detection framework (DCA-YOLOv8) is proposed in this paper. The framework consists of a histogram equalization and canny edge detection preprocessing (HEC) enhancement module, a double coordinate attention (DCA) feature extraction module and an output module that combines a newly designed loss function, named adaptive inner-CIoU (AICI).

View Article and Find Full Text PDF

Wnt (wingless-type MMTV integration site family) signaling is an evolutionary conserved system highly active during embryogenesis, but in adult hearts has low activities under normal conditions. It is essential for a variety of physiological processes including stem cell regeneration, proliferation, migration, cell polarity, and morphogenesis, thereby ensuring homeostasis and regeneration of cardiac tissue. Its dysregulation and excessive activation during pathological conditions leads to morphological and functional changes in the heart resulting in impaired myocardial regeneration under pathological conditions such as myocardial infarction, heart failure, and coronary artery disease.

View Article and Find Full Text PDF

The endothelium plays a key role in regulating vascular homeostasis by responding to a large spectrum of chemical and physical stimuli. Vasculitis is a group of inflammatory conditions affecting the vascular bed, and it is known that they are strongly linked to endothelial dysfunction (ED). Kawasaki disease (KD) is one childhood systemic vasculitis, and it represents the leading cause of acquired cardiac disease in children due to coronary damage and subsequent cardiovascular (CV) morbidity and mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!