Pseudomonas fluorescens grows at low temperature and produces thermo-resistant protease(s) that can destabilize UHT (Ultra High Temperature) milk during its storage. The consequences of contamination of microfiltered milk with 9 strains of P. fluorescens on the stability of the corresponding UHT milk during storage had been investigated in this study. The strains were classified in two groups according to their ability to destabilize UHT milk. For the group of highly destabilizing strains, sedimentations of UHT milks, low values to phosphate test and the presence of aggregates were observed. Zeta potential and hydration of casein micelles decreased, whereas non casein nitrogen (NCN) and non protein nitrogen (NPN) contents increased. The analyses of NCN fraction by liquid chromatography coupled to mass spectrometry indicated that the different casein molecules were hydrolyzed in a similar way for the destabilizing strains suggesting that the same enzyme was implicated. For the group of slightly or not destabilizing strains no visual and biochemical alteration were found. This study showed that destabilization of UHT milk by P. fluorescens was highly variable and strain-dependent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2012.06.099DOI Listing

Publication Analysis

Top Keywords

uht milk
12
destabilizing strains
12
pseudomonas fluorescens
8
casein micelles
8
uht milks
8
destabilize uht
8
milk storage
8
strains
6
uht
6
milk
5

Similar Publications

In this study, raw milk was collected from three different grades of pastures and processed by pasteurization, blending and ultra-high temperature sterilization (UHT) in a factory production line with a feed size of 10 tons. Additionally, all samples (from raw milk to UHT milk samples) were analyzed by -nose and GC-MS. Key flavor compounds such as 2-heptanone, hexanal, nonanal, 3-methyl-butanal, and dimethyl sulfide were found.

View Article and Find Full Text PDF

Influence of Heat- and Cold-Stressed Raw Milk on the Stability of UHT Milk.

Foods

December 2024

Key Laboratory of Dairy Science, Ministry of Education, Department of Food Science, Northeast Agricultural University, Harbin 150030, China.

This study investigated the variations and alterations in the concentrations of plasmin system components in raw and UHT (ultra-high-temperature) milk under cold stress (WCT ≤ -25 °C), heat stress (THI ≥ 80), and normal (THI < 70 and WCT ≥ -10 °C) circumstances. The findings indicated elevated amounts of plasmin system components in cold-stressed raw milk. While storing UHT milk at 25 °C, the concentrations and activity of plasmin in the milk exhibited an initial increase followed by a decrease, peaking around the 30th day.

View Article and Find Full Text PDF

Combined Effects of the Phage and Sodium Hypochlorite for Reducing Biofilm.

Microorganisms

December 2024

Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil.

are significant spoilage bacteria in raw milk and dairy products, primarily due to their ability to form biofilms and resist disinfection. This study explored the effects of the phage combined with sodium hypochlorite in reducing biofilms on stainless steel at various temperatures and ages. Biofilms were formed using UFV 041 in UHT milk, incubated at 4 °C and 30 °C for 2 and 7 days.

View Article and Find Full Text PDF

The quality issues of ultra-high-temperature (UHT) milk, such as protein hydrolysis and aging gels throughout shelf life, are caused by proteases from psychrophilic bacteria. However, existing enzyme activity detection techniques have low sensitivity and cannot accomplish the detection of product deterioration caused by low enzyme activity. In this study, an attempt was made to analyze the relationship between enzymatically cleaved peptides and product quality using peptidomics techniques.

View Article and Find Full Text PDF

Background: Heat treatment influences gastric emptying of proteins and lipids in bovine milk. Whether heat treatment influences lactose gastric emptying and small intestinal lactose disappearance remains unknown.

Objectives: This study aimed to determine the gastric emptying of lactose and its disappearance from the small intestine of the growing pig as a model for the adult human.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!