The presented study was focused on soils developed from fluvioglacial sands from the Puszcza Borecka forest complex. The mobility of chromium, nickel and vanadium was evaluated with regard to litho- and pedogenic factors. The aim of the study was to determine with which soil constituents fractions of heavy metals are bound with particular attention drawn on the mobile fractions (F1+F2). Heavy metal fractions in the soils were determined using the sequential extraction method of Tessier et al. The purpose of sequential extraction methods to soil samples provides relevant information about possible toxicity when they are discharged into the soil environment. Chromium, nickel, and vanadium occurred predominantly in the fraction bound with iron and manganese oxides and in the residual fraction, thus showed low mobility. With regard to mobility, the elements studied can be arranged as follows: V

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2012.08.048DOI Listing

Publication Analysis

Top Keywords

chromium nickel
12
nickel vanadium
12
fluvioglacial sands
8
sequential extraction
8
mobility
4
vanadium mobility
4
mobility soils
4
soils derived
4
derived fluvioglacial
4
sands presented
4

Similar Publications

In China, a significant amount of coal fly ash is stored or used for landfill reclamation. The contaminants in coal fly ash (CFA) leachate can cause regional soil and groundwater contamination during long-term storage. This paper focuses on a coal gangue comprehensive utilisation power plant in Fenyang City, Shanxi Province, China, where the leaching characteristics of CFA were investigated by leaching tests.

View Article and Find Full Text PDF

Background: The biopharmaceutical industry is increasingly interested in the analysis of trace metals due to their significant impact on product quality and drug safety. Certain metals can potentially accelerate the formation of degradants or aggregates in biotherapeutic proteins, leading to drug product quality concerns. A better understanding of metal-mAb interactions would aid in the development of purification processes and formulations, thereby ensuring better drug quality and safety.

View Article and Find Full Text PDF

Chromium-Doped NiBP Micro-Sphere Electrocatalysts for Green Hydrogen Production under Industrial Operational Conditions.

Small Methods

January 2025

Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea.

Wide spread adaptation of green hydrogen can help to mitigate the serious climate issues, increasing global energy demands and the development of advanced electrocatalysts robust under industrial conditions is one of the key technological challenges. Herein, chromium-doped nickel-boride-phosphide (Cr/NiBP) micro sphere (MS) electrocatalyst is demonstrated via a two-step hydrothermal approach along with post-annealing. The Cr/NiBP MS demonstrates low hydrogen evolution reaction and oxygen evaluation reaction over potentials of 78 and 250 mV at 100 mA cm in 1 m KOH, out performing most of the reported catalysts.

View Article and Find Full Text PDF

In the blast furnace and basic oxygen furnace route, pig iron and steel scrap are used as resources for steel production. The scrap content can consist of many different types of scrap varying in origin and composition. This makes it difficult to compile the scrap mix and predict the future chemical analysis in the converter.

View Article and Find Full Text PDF

The reaction of the diborabenzene (DBB) nickel(0) pogo-stick complex [(η-DBB)Ni(CO)] () with a large excess of [Ni(CO)] yields the dark green, unstable dinickel(0) complex [(η-DBB)Ni(μ-CO)Ni(CO)] (), which loses one CO ligand to yield the purple, bimetallic Ni half-sandwich complex [(η-DBB)Ni(μ-CO)(η-CO)] (). The addition of the chromium aminoborylene complex [(OC)Cr{BN(TMS)}] (TMS = trimethylsilyl) to does not result in the expected borylene transfer but in the formation of the black Ni-Cr complex [(η-DBB)Ni(μ-CO)Cr(CO)] (), alongside the dimeric iminoborane [(TMS)BN(TMS)] (), which results from the rearrangement of the released BN(TMS) aminoborylene moiety. Furthermore, the oxidative addition of methyl triflate (MeOTf) to leaves the (η-DBB)Ni moiety intact and provides the ionic Ni half-sandwich complex [(η-DBB)NiMe(CO)]OTf (), while reaction with pentaphenylborole (PPB) yields the unique, dark-blue, unsymmetrical sandwich complex [(η-DBB)Ni(μ-CO)(η-PPB)] ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!