A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting the risk of unplanned readmission or death within 30 days of discharge after a heart failure hospitalization. | LitMetric

Background: The accuracy of current models to predict the risk of unplanned readmission or death after a heart failure (HF) hospitalization is uncertain.

Methods: We linked four administrative databases in Alberta to identify all adults discharged alive after a HF hospitalization between April 1999 and 2009. We randomly selected one episode of care per patient and evaluated the accuracy of five administrative data-based models (4 already published, 1 new) for predicting risk of death or unplanned readmission within 30 days of discharge.

Results: Over 10 years, 59652 adults (mean age 76, 50% women) were discharged after a HF hospitalization. Within 30 days of discharge, 11199 (19%) died or had an unplanned readmission. All 5 administrative data models exhibited moderate discrimination for this outcome (c-statistic between 0.57 and 0.61). Neither Centers for Medicare and Medicaid Services (CMS)-endorsed model exhibited substantial improvements over the Charlson score for prediction of 30-day post-discharge death or unplanned readmission. However, a new model incorporating length of index hospital stay, age, Charlson score, and number of emergency room visits in the prior 6 months (the LaCE index) exhibited a 20.5% net reclassification improvement (95% CI, 18.4%-22.5%) over the Charlson score and a 19.1% improvement (95% CI, 17.1%-21.2%) over the CMS readmission model.

Conclusions: None of the administrative database models are sufficiently accurate to be used to identify which HF patients require extra resources at discharge. Models which incorporate length of stay such as the LaCE appear superior to current CMS-endorsed models for risk adjusting the outcome of "death or readmission within 30 days of discharge".

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ahj.2012.06.010DOI Listing

Publication Analysis

Top Keywords

unplanned readmission
20
charlson score
12
predicting risk
8
risk unplanned
8
readmission death
8
days discharge
8
heart failure
8
failure hospitalization
8
death unplanned
8
readmission days
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!