[The development and current status of integrative medicine at UCLA].

Zhong Xi Yi Jie He Xue Bao

Center for East-West Medicine, University of California, Los Angeles, CA 90095, USA.

Published: September 2012

Download full-text PDF

Source
http://dx.doi.org/10.3736/jcim20120901DOI Listing

Publication Analysis

Top Keywords

[the development
4
development current
4
current status
4
status integrative
4
integrative medicine
4
medicine ucla]
4
[the
1
current
1
status
1
integrative
1

Similar Publications

A synchronized event-cue feedback loop integrating a 3D printed wearable flexible sensor-tactor platform.

Biosens Bioelectron

January 2025

Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA; Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA. Electronic address:

Wearable devices designed for the somatosensory system aim to provide event-cue feedback electronics and therapeutic stimulation to the peripheral nervous system. This prompts a neurological response that is relayed back to the central nervous system. Unlike virtual reality tools, these devices precisely target peripheral mechanoreceptors by administering specific stimuli.

View Article and Find Full Text PDF

The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.

View Article and Find Full Text PDF

A conformational switch-controlled RNA sensor based on orthogonal dCas12a for RNA imaging in live cells.

Biosens Bioelectron

January 2025

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, China; School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China. Electronic address:

RNA imaging technology is essential for understanding the complex RNA regulatory mechanisms and serves as a powerful tool for disease diagnosis. However, conventional RNA imaging methods often require multiple fluorescent tags for the specific labeling of individual targets, complicating both the imaging process and subsequent analysis. Herein, we develop an RNA sensor that integrates a blocked CRISPR RNA (crRNA)-based conformational switch with a controllable CRISPR activation (CRISPRa) system and apply for RNA imaging.

View Article and Find Full Text PDF

Portable paper-based microfluidic devices based on CuS@AgS nanocomposites for colorimetric/electrochemical dual-mode detection of dopamine.

Biosens Bioelectron

January 2025

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China. Electronic address:

The development of integrated multiple signal outputs within a single platform is highly significant for efficient and accurate on-site biomarker detection. Herein, colorimetric/electrochemical dual-mode microfluidic paper-based analytical devices (μPADs) were designed for portable, visual and accurate dopamine (DA) detection. The dual-mode μPADs, featuring folded structure, integrate a colorimetric layer and an electrochemical layer using wax printing and laser-induced graphene (LIG) pyrolysis techniques, allowing the vertical flow of analyte solution.

View Article and Find Full Text PDF

Early ultrastructural damage in retina and optic nerve following intraocular pressure elevation.

Vision Res

January 2025

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

Elevated intraocular pressure (IOP) is a significant risk factor for glaucoma, causing structural and functional damage to the eye. Increased IOP compromises the metabolic and structural integrity of retinal ganglion cell (RGC) axons, leading to progressive degeneration and influencing the ocular immune response. This study investigated early cellular and molecular changes in the retina and optic nerve (ON) following ocular hypertension (OHT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!