In a continuing study of bevirimat (2), the anti-HIV-maturation clinical trials agent, 28 new betulinic acid (BA, 1) derivatives were designed and synthesized. Among these compounds, 17, with a C-28 MEM ester moiety, and 22, with a C-28 ethyl hexanoate, increased the anti-HIV replication activity compared with 2 by 2-fold while compounds 40, 41, 48, and 49, with C-28 piperazine or piperidine amide substitutions, increased the activity by 3- to 15-fold. The best new compound, 41, exhibited an anti-HIV IC(50) of 0.0059 μM compared with 0.087 μM for 2. All of the active compounds showed only antimaturation effects, as confirmed by TZM-bl assay, in blocking the HIV replication. The results suggest that proper C-28 substitutions can further enhance the antimaturation activity of 2 without any antientry effects. Thus, 41 may serve as a promising new lead for development of anti-AIDS clinical trial candidates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478670 | PMC |
http://dx.doi.org/10.1021/jm301040s | DOI Listing |
J Agric Food Chem
December 2024
Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
Oncogene
December 2024
National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
Aberrant expression of epidermal growth factor receptor (EGFR) plays a critical role in the pathogenesis of various tumors, potentially representing a target for therapeutic intervention. Nonetheless, EGFR remains a challenging protein to target pharmacologically in triple-negative breast cancer (TNBC). An emerging approach to address the removal of such proteins is the application of molecular glue (MG) degraders.
View Article and Find Full Text PDFFitoterapia
January 2025
Guangdong Key Laboratory for Research and Development of Natural Drugs, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; College of Pharmacy, Jinan University, #855Xingye Avenue, Guangzhou 510632, China; Dongguan Key Laboratory for Marine Innovative Drugs and Bioproducts, Guangdong Medical University, Dongguan 523808, China. Electronic address:
Ten new limonoids, named xylomolones E-N (1-10), and two new protolimonoids, named xylomolones O (11) and P (12), were isolated from seeds of the Thai mangrove Xylocarpus moluccensis, together with the known compound, hispidone acetonide (13). The structures of these compounds were established by extensive NMR spectroscopic data, single-crystal X-ray diffraction analysis, and comparison of experimental ECD spectra. The absolute configurations of xylomolones E (1) and L (8) were unambiguously determined by single-crystal X-ray diffraction analyses, conducted with Cu Kα radiation.
View Article and Find Full Text PDFInsect Biochem Mol Biol
January 2025
College of Life Sciences, Northwest University, Xi'an, China. Electronic address:
As eusocial insects prevalent in tropical and subtropical regions, termites are characterized by highly organized behaviors and exceptional adaptability, rooted in caste differentiation and chemical communication. These traits make them excellent models for studying insect social structures and ecological interactions. Investigating how termites use chemical signals to perceive and respond to their environment provides insights into their coordination and adaptation within complex ecosystems.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2024
Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.
We introduce vacuum resonance-enhanced multiphoton ionization (REMPI) with high-resolution Orbitrap Fourier transform mass spectrometry (FTMS) for analyzing silylated polar compounds. UV laser radiation at 248 nm sensitively and selectively targets aromatic constituents, while high-resolution mass spectrometry (HRMS) enables high-performance mass spectrometric detection. This workflow enhances the detection confidence of polar constituents by identifying unique isotopologue patterns, including at the isotopic fine structure (IFS) level, in analytical standards and complex bio-oils.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!