A novel fluorescent probe for peroxynitrite, PN(600), was rationally designed on the basis of a unique fluorophore assembly approach. PN(600) is a green-emitting coumarin derivative. Upon oxidation by peroxynitrite, PN(600) is transformed into a highly fluorescent red-emitting resorufin derivative via an orange-emitting intermediate. This three-channel signaling capability enables PN(600) to differentiate peroxynitrite from other reactive oxygen and nitrogen species, including hypochlorite and hydroxyl radical. Moreover, PN(600) is membrane-permeable and compatible with common TRITC filter sets and displays low cytotoxicity. Therefore, PN(600) is a promising candidate for in vitro peroxynitrite imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja305046uDOI Listing

Publication Analysis

Top Keywords

fluorescent probe
8
peroxynitrite pn600
8
pn600
6
peroxynitrite
5
three-channel fluorescent
4
probe distinguishes
4
distinguishes peroxynitrite
4
peroxynitrite hypochlorite
4
hypochlorite novel
4
novel fluorescent
4

Similar Publications

Discovery of an Enzyme-Activated Fluorogenic Probe for Profiling of Acylaminoacyl-Peptide Hydrolase.

Anal Chem

January 2025

Department of Laboratory Medicine, School of Medicine, Yangtze University, Jingzhou 434023, P.R. China.

Acylaminoacyl-peptide hydrolase (APEH), a serine peptidase that belongs to the prolyl oligopeptidase (POP) family, catalyzes removal of N-terminal acetylated amino acid residues from peptides. As a key regulator of protein N-terminal acetylation, APEH was involved in many important physiological processes while its aberrant expression was correlated with progression of various diseases such as inflammation, diabetics, Alzheimer's disease (AD), and cancers. However, while emerging attention has been attracted in APEH-related disease diagnosis and drug discovery, the mechanisms behind APEH and related disease progression are still unclear; thus, further investigating the physiological role and function of APEH is of great importance.

View Article and Find Full Text PDF

Heterogeneity in Fluorescence-Stained Sperm Membrane Patterns and Their Dynamic Changes Towards Fertilization in Mice.

Front Biosci (Landmark Ed)

January 2025

Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.

Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.

View Article and Find Full Text PDF

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Benzo[1,2-b:6,5-b']dithiophene-4,5-diamine: A New Fluorescent Probe for the High-Sensitivity and Real-Time Visual Monitoring of Phosgene.

Sensors (Basel)

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.

The detection of highly toxic chemicals such as phosgene is crucial for addressing the severe threats to human health and public safety posed by terrorist attacks and industrial mishaps. However, timely and precise monitoring of phosgene at a low cost remains a significant challenge. This work is the first to report a novel fluorescent system based on the Intramolecular Charge Transfer (ICT) effect, which can rapidly detect phosgene in both solution and gas phases with high sensitivity by integrating a benzo[1,2-b:6,5-b']dithiophene-4,5-diamine (BDTA) probe.

View Article and Find Full Text PDF

In a search for dyes photoactivatable with visible light, fluorenes with substituents at positions 2 and 7 were prepared, and their absorption and emission spectra were studied. In particular, the synthesis route to 9-diazofluorenes with 2-(N,N-dialkylamino) and N-modified 7-(4-pyridyl) substituents was established. These compounds are initially non-fluorescent, undergo photolysis with UV or blue light, and-in non-polar media-provide orange- to red-emitting products with a large separation between absorption and emission bands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!