Spintronic devices are very important for future information technology. Suitable materials for such devices should have half-metallic properties with only one spin channel conducting. Nanostructures have played an important role in this aspect. Here, we report the realization of robust half-metallic ferromagnetism via the interface electronic reconstruction in artificial LaAlO(3)/SrMnO(3) nanosheet supperlattices. On the basis of first-principles density-functional calculations, we reveal an obvious electron transfer from the (LaO)(+) layer to the adjacent (MnO(2))(0) layer. And the partially occupied e(g) orbitals at the Mn sites can mediate a half-metallic state via a Zener double-exchange mechanism. On the other hand, for the superlattices with a (SrO)(0)/(AlO(2))(-) interface, hole transfer at the interface is identified. These transferred holes reside mainly at oxygen sites in SrMnO(3), leading to either the preserved G-type AFM ordering in pp-type superlattices or complex magnetic ordering in np-type superlattices. Interestingly, when these systems transit to ferromagnetic ordering by an external magnetic field, an obvious change of electronic state at the Fermi level is found, suggesting a large magnetoresistive effect therein. Our studies demonstrate the unique electric and magnetic properties arising from a magnetic ordering dependent charge transfer and electronic reconstruction at perovskite heterointerfaces, and their potential applications in spintronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn303943t | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!