Background: Head and neck paragangliomas (HNPGLs) are rare tumors associated with the parasympathetic nervous system. Most are sporadic, but about one third result from germline mutations in succinate dehydrogenase (SDH) genes (SDHB, SDHC, SDHD, SDHA, or SDHAF2). Although a molecular connection between SDH dysfunction and tumor development is still unclear, the most accepted hypothesis proposes a central role of the pseudohypoxic pathway. SDH dysfunction induces abnormal stabilization of the hypoxia-inducible factors (HIFs) that regulate target genes involved in proliferation, apoptosis, angiogenesis, and metabolism. The involvement of these pathways in the development of sporadic HNPGLs is presently unknown.

Objective: To get some insights into the hypoxic/pseudohypoxic molecular basis of HNPGLs, we attempted to define the gene, microRNA (miRNA), and HIF-1α expression patterns that distinguish tumors from normal paraganglia tissue.

Design: Genome microarray and TaqMan low-density arrays were used to analyze gene and miRNA expression, respectively, in 17 HNPGL tumor tissues and three normal human carotid bodies. Twelve HNPGLs were used for validation of data. HIF-1α, SDHB, and iron-sulfur cluster scaffold protein (ISCU) protein expression was analyzed by immunohistochemistry.

Results: We found activation of a canonical HIF-1α-related gene expression signaling only in a subset of HNPGLs from patients that did not harbor germline or somatic SDH mutations. The pseudohypoxic signature consisted in the overexpression of both HIF-1α-target genes and the HIF-1α-inducible miRNA, miR-210, and down-regulation of the miR-210 target gene, ISCU1/2. A decreased level of the iron-sulfur-containing protein SDHB was found by immunohistochemical analysis performed in two of these tumors.

Conclusions: Collectively, this study unveiled a putative signaling axis of HIF-1α/miRNA-210/ISCU in a subset of HNPGLs that could have an impact on SDHB protein stability by a mechanism independent of SDH mutations, thus providing a foundation to better understand the functional interplay between HIF, miR-210, and mitochondria and its relevance in the pathogenesis of HNPGLs.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2012-2410DOI Listing

Publication Analysis

Top Keywords

signaling axis
8
independent sdh
8
head neck
8
neck paragangliomas
8
sdh dysfunction
8
subset hnpgls
8
sdh mutations
8
hnpgls
7
sdh
6
identification signaling
4

Similar Publications

Multiple myeloma (MM) remains an incurable hematological malignancy that necessitates the identification of novel therapeutic strategies. Here, we report that intracellular levels of very long chain fatty acids (VLCFAs) control the cytotoxicity of MM chemotherapeutic agents. Inhibition of VLCFA biosynthesis reduced cell death in MM cells caused by the proteasome inhibitor, bortezomib.

View Article and Find Full Text PDF

Oncolytic viruses (OVs) emerge as a promising cancer immunotherapy. However, the temporal impact on tumor cells and the tumor microenvironment, and the nature of anti-tumor immunity post-therapy remain largely unclear. Here we report that CD4 T cells are required for durable tumor control in syngeneic murine models of glioblastoma multiforme after treatment with an oncolytic herpes simplex virus (oHSV) engineered to express IL-12.

View Article and Find Full Text PDF

Background: Regeneration plays a key role in energy recycling and homeostasis maintenance. Planarians, as ideal model animals for studying regeneration, stem cell proliferation, and apoptosis, have the strong regenerative abilities. Considerable evidence suggests that ubiquitin plays an important role in maintaining homeostasis and regulating regeneration, but the function of Ubiquitin specific proteases 7 (Usp7) on regeneration in planarians remains elusive.

View Article and Find Full Text PDF

Cancer-associated fibroblasts promote oral squamous cell carcinoma progression by targeting ATP7A via exosome-mediated paracrine miR-148b-3p.

Cell Signal

January 2025

Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:

Cuproptosis is a newly discovered form of non-apoptotic cell death. Cancer-associated fibroblasts (CAFs) can secrete various bioactive substances, including exosomes, to promote tumor progression. However, the impact of CAFs on the regulation of copper metabolism and cuproptosis in oral squamous cell carcinomas (OSCC) has not been investigated.

View Article and Find Full Text PDF

DM9CP-8 upon binding microbes activates MASPL-1-C3 axis to regulate the mRNA expressions of IL17s in oysters.

Int J Biol Macromol

January 2025

College of Life Sciences, Liaoning Normal University, Dalian 116029, Liaoning, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Aquatic Disease Prevention and Control, Dalin Ocean University, Dalian 116023, China. Electronic address:

DM9 domain-containing protein (DM9CP) as pattern recognition molecule is involved in regulating the inflammation-related signaling pathway in invertebrates. In the present study, a DM9CP with two tandem DM9 repeats (designated as CgDM9CP-8) was identified from Crassostrea gigas. The mRNA transcript of CgDM9CP-8 was the highest in haemocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!