Aims: Cardiac hypertrophy and fibrosis are associated with potentially lethal arrhythmias. As these substrates often occur simultaneously in one patient, distinguishing between pro-arrhythmic mechanisms is difficult. This hampers understanding of underlying pro-arrhythmic mechanisms and optimal treatment. This study investigates and compares arrhythmogeneity and underlying pro-arrhythmic mechanisms of either cardiac hypertrophy or fibrosis in in vitro models.

Methods And Results: Fibrosis was mimicked by free myofibroblast (MFB) proliferation in neonatal rat ventricular monolayers. Cultures with inhibited MFB proliferation were used as control or exposed to phenylephrine to induce hypertrophy. At Day 9, cultures were studied with patch-clamp and optical-mapping techniques and assessed for protein expression. In hypertrophic (n = 111) and fibrotic cultures (n = 107), conduction and repolarization were slowed. Triggered activity was commonly found in these substrates and led to high incidences of spontaneous re-entrant arrhythmias [67.5% hypertrophic, 78.5% fibrotic vs. 2.9% in controls (n = 102)] or focal arrhythmias (39.1, 51.7 vs. 8.8%, respectively). Kv4.3 and Cx43 protein expression levels were decreased in hypertrophy but unaffected in fibrosis. Depolarization of cardiomyocytes (CMCs) was only found in fibrotic cultures (-48 ± 7 vs. -66 ± 7 mV in control, P < 0.001). L-type calcium-channel blockade prevented arrhythmias in hypertrophy, but caused conduction block in fibrosis. Targeting heterocellular coupling by low doses of gap-junction uncouplers prevented arrhythmias by accelerating repolarization only in fibrotic cultures.

Conclusion: Cultured hypertrophic or fibrotic myocardial tissues generated similar focal and re-entrant arrhythmias. These models revealed electrical remodelling of CMCs as a pro-arrhythmic mechanism of hypertrophy and MFB-induced depolarization of CMCs as a pro-arrhythmic mechanism of fibrosis. These findings provide novel mechanistic insight into substrate-specific arrhythmicity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvs290DOI Listing

Publication Analysis

Top Keywords

pro-arrhythmic mechanisms
12
hypertrophic fibrotic
8
cardiac hypertrophy
8
hypertrophy fibrosis
8
underlying pro-arrhythmic
8
mfb proliferation
8
protein expression
8
fibrotic cultures
8
re-entrant arrhythmias
8
prevented arrhythmias
8

Similar Publications

Background: Loss of stromal interaction molecule 1 (STIM1) expression in smooth muscle cells protects against ischemia-reperfusion (I/R) injury. Whether and how decreased STIM1 expression in cardiomyocytes (CM) impacts cardiac remodeling in response to I/R injury remains unknown.

Objective: To examine mechanisms by which decreased CM-STIM1 expression in the adult heart modulates cardiac function before and after I/R injury.

View Article and Find Full Text PDF

Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations.

View Article and Find Full Text PDF

Dual calcium-voltage optical mapping of regional voltage and calcium signals in intact murine -R2474S hearts.

J Mol Cell Cardiol Plus

December 2024

Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China.

Unlabelled: Abnormal regional variations in electrical and calcium homeostasis properties have been implicated in catecholaminergic polymorphic ventricular tachycardias (CPVT) attributable to abnormal RyR2-mediated store Ca release, but their underlying mechanism have not been well explored in intact hearts.

Methods: We performed in vivo and ex vivo studies including high throughput mapping of Ca transients (CaT) and transmembrane voltage (V) in murine wild-type (WT) and heterozygous -R2474S/+ hearts, before and during isoprenaline (ISO) challenge.

Results: ISO-challenged -R2474S/+ showed increased incidence of arrhythmia accompanied by abnormal Ca transients compared to WT.

View Article and Find Full Text PDF

Athletes are predisposed to atrial arrhythmias but the association between intense endurance exercise training, ventricular arrhythmias (VAs), and sudden cardiac death is less well established. Thus, it is unclear whether the 'athlete's heart' promotes specific arrhythmias or whether it represents a more general pro-arrhythmogenic phenotype. Whilst direct causality has not been established, it appears possible that repeated exposure to high-intensity endurance exercise in some athletes contributes to formation of pro-arrhythmic cardiac phenotypes that underlie VAs.

View Article and Find Full Text PDF

X-ray Radiotherapy Impacts Cardiac Dysfunction by Modulating the Sympathetic Nervous System and Calcium Transients.

Int J Mol Sci

August 2024

PSE-SANTE/SESANE/LRTOX, Institut de Radioprotection et de Sûreté Nucléaire-IRSN, 92260 Fontenay-aux-Roses, France.

Recent epidemiological studies have shown that patients with right-sided breast cancer (RBC) treated with X-ray irradiation (IR) are more susceptible to developing cardiovascular diseases, such as arrhythmias, atrial fibrillation, and conduction disturbances after radiotherapy (RT). Our aim was to investigate the mechanisms induced by low to moderate doses of IR and to evaluate changes in the cardiac sympathetic nervous system (CSNS), atrial remodeling, and calcium homeostasis involved in cardiac rhythm. To mimic the RT of the RBC, female C57Bl/6J mice were exposed to X-ray doses ranging from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!