Epigenetic dysfunction is a known contributor in carcinogenesis, and is emerging as a mechanism involved in toxicant-induced malignant transformation for environmental carcinogens such as arsenicals or cadmium. In addition to aberrant DNA methylation of single genes, another manifestation of epigenetic dysfunction in cancer is agglomerative DNA methylation, which can participate in long-range epigenetic silencing that targets many neighboring genes and has been shown to occur in several types of clinical cancers. Using in vitro model systems of toxicant-induced malignant transformation, we found hundreds of aberrant DNA methylation events that emerge during malignant transformation, some of which occur in an agglomerative fashion. In an arsenite-transformed prostate epithelial cell line, the protocadherin (PCDH), HOXC and HOXD gene family clusters are targeted for agglomerative DNA methylation. The agglomerative DNA methylation changes induced by arsenicals appear to be common and clinically relevant events, since they occur in other human cancer cell lines and models of malignant transformation, as well as clinical cancer specimens. Aberrant DNA methylation in general occurred more often within histone H3 lysine-27 trimethylation stem cell domains. We found a striking association between enrichment of histone H3 lysine-9 trimethylation stem cell domains and toxicant-induced agglomerative DNA methylation, suggesting these epigenetic modifications may become aberrantly linked during malignant transformation. In summary, we found an association between toxicant-induced malignant transformation and agglomerative DNA methylation, which lends further support to the hypothesis that epigenetic dysfunction plays an important role in toxicant-induced malignant transformation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499325 | PMC |
http://dx.doi.org/10.4161/epi.22163 | DOI Listing |
PLoS Comput Biol
January 2025
Centre for Evolution and Cancer, Institute of Cancer Research, London, United Kingdom.
The applications of artificial intelligence (AI) and deep learning (DL) are leading to significant advances in cancer research, particularly in analysing histopathology images for prognostic and treatment-predictive insights. However, effective translation of these computational methods requires computational researchers to have at least a basic understanding of histopathology. In this work, we aim to bridge that gap by introducing essential histopathology concepts to support AI developers in their research.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
About one out of two diabetic patients develop diabetic neuropathy (DN), of these 20% experience neuropathic pain (NP) leading to individual, social, and health-economic burden. Risk factors for NP are largely unknown; however, premature aging was recently associated with several chronic pain disorders. DNA methylation-based biological age (DNAm) is associated with disease risk, morbidity, and mortality in different clinical settings.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
Background: Differential DNA methylation in the promoter region of tumour suppressor genes leads to gene function silencing.
Materials And Methods: In this study, we aimed to evaluate the salivary promoter methylation of EDNRB, MGMT and TIMP3 genes in H&NC patients (n = 100), premalignant lesions patients (n = 25) and healthy controls (n = 50). Blood and saliva samples were collected from all three groups and 20 concomitant tumour tissues were collected from the H&NC patients.
Epigenomes
January 2025
Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
The skin, the largest organ of the human body, plays numerous essential roles, including protection against environmental hazards and the regulation of body temperature. The processes of skin homeostasis and ageing are complex and influenced by many factors, with epigenetic mechanisms being particularly significant. Epigenetics refers to the regulation of gene expression without altering the underlying DNA sequence.
View Article and Find Full Text PDFEpigenomes
January 2025
Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland.
Rheumatoid arthritis (RA) is a progressive autoimmune disease leading to structural and functional joint damage and, eventually, to physical disability. The pathogenesis of the disease is highly complex and involves interactions between fibroblast-like synoviocytes (FLSs) and immune cells, which stimulate the secretion of pro-inflammatory factors, leading to chronic inflammation. In recent years, studies have demonstrated the importance of epigenetics in RA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!